设f(x)为二阶可导函数,且f(tanx)=1+sin^2x\cos^2x,求f''(x)是(1+sin^2 x)\cos^2 x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:36:52
设f(x)为二阶可导函数,且f(tanx)=1+sin^2x\cos^2x,求f''(x)是(1+sin^2 x)\cos^2 x
x){n_Fy9cOyھ :OvLI(I̫д5.̋3I/R:66u>B=% 6IE6%v6B?j {qF l* f$ف

设f(x)为二阶可导函数,且f(tanx)=1+sin^2x\cos^2x,求f''(x)是(1+sin^2 x)\cos^2 x
设f(x)为二阶可导函数,且f(tanx)=1+sin^2x\cos^2x,求f''(x)
是(1+sin^2 x)\cos^2 x

设f(x)为二阶可导函数,且f(tanx)=1+sin^2x\cos^2x,求f''(x)是(1+sin^2 x)\cos^2 x
f(tanx)=1+tan^2x
所以f(x)=1+x^2
f'(x)=2x
f''(x)=2