如图.将一根长为2M的木棍AB斜靠在地面OM垂直的墙ON上.木棍的中点为P.木棍A端延墙下滑.B端沿地面向右滑行.1.请判断滑动过程中.点P到点O的距离是否变化.并说明理由.2.当木棍下滑到什么位置时

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 10:47:28
如图.将一根长为2M的木棍AB斜靠在地面OM垂直的墙ON上.木棍的中点为P.木棍A端延墙下滑.B端沿地面向右滑行.1.请判断滑动过程中.点P到点O的距离是否变化.并说明理由.2.当木棍下滑到什么位置时
xV[OG+HeV8nվDj/66TE}r!$6r [j?䟤;gvlknR>TjvesLg-1OX\~TLݩTmo[(kcNq ӥU6~>-Lĩ4Ne<ɆN^>x:'nm@ᾪXxr O_e9uwv4x{'I+G$Qswǣ,>w^#ozE,>"yaS:9x;.st?A/: $;WܰA\0s12ĕ5 y`%t}qi7ÚFk~^яc<}y.u?mE ,Ҳ$>TMʹ`1YSqIF iCIYV*b(Ka%%")ࣼeˊ@0%Œy%΋dtq}:榜ږmO~n$8W:]K'Fę:nn #gG`'C1'0z2}; [%OI0aK 3uje9%U|(L#$}hҐW{&/<)xxZy{$"I3Ϲ <.?z+%򋻴/s7^·_(^<p$ԎP"Li}p

如图.将一根长为2M的木棍AB斜靠在地面OM垂直的墙ON上.木棍的中点为P.木棍A端延墙下滑.B端沿地面向右滑行.1.请判断滑动过程中.点P到点O的距离是否变化.并说明理由.2.当木棍下滑到什么位置时
如图.将一根长为2M的木棍AB斜靠在地面OM垂直的墙ON上.木棍的中点为P.木棍A端延墙下滑.B端沿地面向右滑行.
1.请判断滑动过程中.点P到点O的距离是否变化.并说明理由.
2.当木棍下滑到什么位置时.三角形ABO的面积最大.并求出最大面积是多少?

如图.将一根长为2M的木棍AB斜靠在地面OM垂直的墙ON上.木棍的中点为P.木棍A端延墙下滑.B端沿地面向右滑行.1.请判断滑动过程中.点P到点O的距离是否变化.并说明理由.2.当木棍下滑到什么位置时
我们解答一般情形的问题,设AB的长度为2a
1)
OP的长度不变化
连接OP
因为△AOB是直角三角形
而P是斜边的中点
所以OP是斜边上的中线
所以OP=AB/2=a
即OP的长度与P点的位置无关,O和P的距离为定值a
2)
设OA=√X,则OB=√(4a^2-X)
所以2S△AOB=OA*OB
=√X*(4a^2-X)
=√(-X^2+4a^2*X)
=√(-X^2+4a^2*X-4a^4+4a^2)
=√[-(X-2a^2)^2+4a^2]
所以当X=2a^2时,2S△AOB最大
即当OA=OB=√2*a时,
S△AOB最大=OA*OB/2=a^2
此时,△AOB为等腰直角三角形
本题中,a=1
所以即当OA=OB=√2时,
S△AOB最大=1
此时,△AOB为等腰直角三角形

1 不变,直解三角形的中线为斜线的一半,所以 PO = 1,没有变化
2 设 AO = x, 由 AO^2 + BO^2 = AB^2
得 BO = 根号下(4-x^2)
三角形ABO的面积 = AO*BO/2
= x*√4-x^2 /2
= √x^2*(4-x^2) /2 = √-(x^2-2)^2+4 /2
当 x^2 = 2时 ,即...

全部展开

1 不变,直解三角形的中线为斜线的一半,所以 PO = 1,没有变化
2 设 AO = x, 由 AO^2 + BO^2 = AB^2
得 BO = 根号下(4-x^2)
三角形ABO的面积 = AO*BO/2
= x*√4-x^2 /2
= √x^2*(4-x^2) /2 = √-(x^2-2)^2+4 /2
当 x^2 = 2时 ,即 x = √2 时,面积有最小值,为1

收起

第一题是 距离不发生变化。
第二题 是 AO=BO是面积最大,s=1/2*AO*BO AO*AO+BO*BO=AB*AB
又2AO*BO<=AO*AO+BO*BO=4,所以最大为s=1。

2 当△AOB为等腰直角三角形时面积最大
当△AOB为等腰Rt三角形时 OP等于AB一半等于1 所以AO等于BO等于根号2
所以面积为根号2×根号2×0.5等于1

(也就是说AO=BO)时候,是当OP垂直于AB时,它组成的面积最大,因为AB=2米是固定的,也就是它的底长是固定的,要确定ABO的面积还有一个条件就是三角形ABO的高OP的长度,
在OP垂直于AB时。三角形的面积ABO的面积就=AB*OP/2=1

如图.将一根长为2M的木棍AB斜靠在地面OM垂直的墙ON上.木棍的中点为P.木棍A端延墙下滑.B端沿地面向右滑行.1.请判断滑动过程中.点P到点O的距离是否变化.并说明理由.2.当木棍下滑到什么位置时 如图.将一根长为2M的木棍AB斜靠在地面OM垂直的墙ON上.木棍的中点为P.木棍A端延墙下滑.B端沿地面向右滑行.1.请判断滑动过程中.点P到点O的距离是否变化.并说明理由.2.当木棍下滑到什么位置时 一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P.若木棍A端 如图,一根长2米的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的重点为P,木棍A端沿墙下滑,且B沿地面向右滑行.在木棍下滑的过程中,当滑到什么位置时,△AOB的面积最大,并求出面积 如图所示:一根长2a的木棍(AB),斜靠在与地面(如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行.(1)请判断木 如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P.7(2005•海淀区)如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中 一根长2a的木根AB,斜靠在与地面OM垂直的墙ON上,设木棍的中点为P,如果木棍A端沿墙下滑,且B端沿地面向右滑 如图,一根长2米的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,木棍A端沿墙下滑,且B端沿地面向右滑行,设木棍下滑过程中OA=x米,OB=y米,起初OA=1.5米.(1)写出y关于x的函数关系式.(2)写出 勾股定理及逆定理如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行.(1)请判断木棍滑动的过程中,点P到点O的 如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行.在木棍滑动的过程中,当滑动到什么位置时,△AOB的面积最大? 一根长2a的木棍AB,斜靠在与地面OM垂直的墙ON上,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行.在木棍滑动的过程中,当滑动到什么位置时,△AOB的面积最大?请详细说明理由! 八年级数学题,有答案,求讲解如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行.问:在木棍滑动的过程中,当滑 勾股定理求最值31、(10分)如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行.(1)请判断木棍滑动的过程中, 一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上 设木棍中点为p,诺木棍A端沿墙下滑,且B端沿地面向右滑行,在木棍划动中滑动到什么位置时,三角形AOB面积最大,简述理由并求出面积最大值 初中数学题目几道(1)直角三角形的斜边与一直角边的比为13:5,若较大的为α,则cosα=(2)一根长2a的木棍AB斜靠在与地面OM垂直的墙ON上,设木棍的中点为P,若木棍A端沿墙下滑,且B端沿地面向 如图,两根直木棍AB和CD相互平行,斜靠在竖直墙壁上固定不动,一根水泥圆筒从木棍上部匀速滑下,若保持两木棍倾角不变,将两者间的距离稍减小后固定不动,扔将水泥圆筒放在木棍上部,则水泥 一根长为10米的木棍AB斜放在与地面OM垂直的墙上.一根长为10米的木棍AB斜放在与地面OM垂直的墙上.设木棍的中点为P,木棍的A端距离地面的垂直距离是8米,若木棍A端沿墙下滑1米,B端沿地面向右 如图,一根长6倍根号3m的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60º,当木棒A端沿墙下滑至点A’时,B端沿地面向右滑行至点B’.⑴求OB的长;⑵当AA‘=1m时,求