错位相减法 n·an=n·(-1/2)^﹙n-1﹚,求﹛nan﹜的前n项和求sn-(-1/2)sn以后的步骤 及

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 21:29:28
错位相减法 n·an=n·(-1/2)^﹙n-1﹚,求﹛nan﹜的前n项和求sn-(-1/2)sn以后的步骤 及
x){9e擽gxlTClf3t lc|V޼ w>(Ӆ/{{ }@.}j."}jX6mv6tXpu0e[5vj< nE;XHFzc=<76]%P;0-@2Y䧽5!FDb5 ALL :TaoIWHXI~qAb(קH

错位相减法 n·an=n·(-1/2)^﹙n-1﹚,求﹛nan﹜的前n项和求sn-(-1/2)sn以后的步骤 及
错位相减法 n·an=n·(-1/2)^﹙n-1﹚,求﹛nan﹜的前n项和
求sn-(-1/2)sn以后的步骤 及

错位相减法 n·an=n·(-1/2)^﹙n-1﹚,求﹛nan﹜的前n项和求sn-(-1/2)sn以后的步骤 及
Sn=1+2×(-1/2)+3×(-1/2)²+…+n·(-1/2)^(n-1),则
(-1/2)Sn=1×(-1/2)+2×(-1/2)²+…+(n-1)·(-1/2)^(n-1)+n·(-1/2)^n,
两式相减,得
Sn -(-1/2)Sn=1+(-1/2)+(-1/2)²+…+(-1/2)^(n-1)-n·(-1/2)^n,
即(3/2)Sn=[1-(-1/2)^n]/(1+1/2)-n·(-1/2)^n,
所以,Sn=(4/9)[1-(-1/2)^n]-(2/3)n·(-1/2)^n.