求函数y=sin(x+1/3兀)sin(x+1/2兀)的周期

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 02:33:47
求函数y=sin(x+1/3兀)sin(x+1/2兀)的周期
xRJ@ 3 !d`үpeB]Ip E1NӍcHq/xabK}l{9̽7쵫?=}.t:"O/pUgS"xw?E{+D=㓗[nFCQC/mw`(UhqNeZ@OfI 6D]q A Kħ (iK IʰkJ,%iCk6Y)> VvԜ,'O΢Zoʍh_bZ.˵@i.̾|5yge[w4)E x|" ޜQ60K/[QE

求函数y=sin(x+1/3兀)sin(x+1/2兀)的周期
求函数y=sin(x+1/3兀)sin(x+1/2兀)的周期

求函数y=sin(x+1/3兀)sin(x+1/2兀)的周期
y=sin(x+1/3兀)sin(x+1/2兀)
=-1/2[cos(2x+5π/6)-cos(-π/6)]
所以
T=2π/w=2π/2=π

周期是π

y=sin(x+1/3兀)sin(x+1/2兀)
=[sinxcos(π/3)+cosxsin(π/3)][sinxcosπ/2+cosxsin(π/2)]
=[(sinx)/2+(√3/2)cosx]cosx
=(1/2)sinxcosx+(√3/2)cos²x
=(1/4)sin(2x)+(√3/4)(cos2x+1)
=(1/2)[(1/2)sin2x+(√3/2)cos2x]+√3/4
=(1/2)sin(2x+π/3)+√3/4
所以 函数的周期为 2π/2=π

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
y=sin(x+1/3兀)sin(x+1/2兀)
=(-1/2)[cos(2x+5π/6)-cos(π/6)]
=(-1/2)cos(2x+5π/6)+√3/4
所以,函数的周期为kπ,k∈Z

y=[(1/2)sinx+√3/2cosx]cosx
=(1/4)sin2x+√3/4(1+cos2x)
=(1/2)[(1/2)sin2x+√3/2cos2x]+√3/4
=(1/2)sin(2x+π/3)+√3/4
周期为π。