高二数学求导:y=(x^m+a^m)(x^n+a^n)y=(x^m+a^m)(x^n+a^n) y=sin^4(3x)乘以cos^3(4x) y=2(e^(x/2)+e^(-x/2))
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 05:10:14
高二数学求导:y=(x^m+a^m)(x^n+a^n)y=(x^m+a^m)(x^n+a^n) y=sin^4(3x)乘以cos^3(4x) y=2(e^(x/2)+e^(-x/2))
高二数学求导:y=(x^m+a^m)(x^n+a^n)
y=(x^m+a^m)(x^n+a^n)
y=sin^4(3x)乘以cos^3(4x)
y=2(e^(x/2)+e^(-x/2))
高二数学求导:y=(x^m+a^m)(x^n+a^n)y=(x^m+a^m)(x^n+a^n) y=sin^4(3x)乘以cos^3(4x) y=2(e^(x/2)+e^(-x/2))
y=(x^m+a^m)(x^n+a^n)
y'=(x^m+a^m)'(x^n+a^n)+(x^m+a^m)(x^n+a^n)'=m[x^(m-1)](x^n+a^n)+n[x^(n-1)](x^m+a^m)
y=[sin^4(3x)]*[cos^3(4x)]
y=[sin^4(3x)]'*[cos^3(4x)]+[sin^4(3x)]*[cos^3(4x)]'
=12[sin^3(3x)]*(cos3x)*[cos^3(4x)]-[sin^4(3x)]*12[cos^2(4x)]*(sin4x)
y=2[e^(x/2)+e^(-x/2)]
y'=2[(1/2)e^(x/2)-(1/2)e^(-x/2)]
=e^(x/2)-e^(-x/2)
1.
y=(x^m+a^m)(x^n+a^n)=x^(m+n)+(a^m)(x^n)+(a^n)x^m+a^(m+n)
y'=(m+n)x^(m+n-1)+(na^m)x^(n-1)+(ma^n)x^(m-1)
2.
y=(sin3x)^4*(cos4x)^3
y'=[(sin3x)^4]'*(cos4x)^3+(sin3x)^4*[(cos4x)^3]'<...
全部展开
1.
y=(x^m+a^m)(x^n+a^n)=x^(m+n)+(a^m)(x^n)+(a^n)x^m+a^(m+n)
y'=(m+n)x^(m+n-1)+(na^m)x^(n-1)+(ma^n)x^(m-1)
2.
y=(sin3x)^4*(cos4x)^3
y'=[(sin3x)^4]'*(cos4x)^3+(sin3x)^4*[(cos4x)^3]'
=4(sin3x)^3*cos3x*3*(cos4x)^4+() 第二项同样分步求导
3.
y=2[e^(x/2)+e^(-x/2)]
y'=2e^(x/2)*(x/2)'+2e^(-x/2)*(-x/2)'
=e^(x/2)*-e^(-x/2)
收起
y=(x^m+a^m)(x^n+a^n)
先由乘积的求导法则y`=(x^m+a^m)`(x^n+a^n) +(x^m+a^m)(x^n+a^n) `
=(mx^(m-1))(x^n+a^n) +(x^m+a^m)(nx^(n-1)) =mx^(m+n-1)+ma^nx^(m-1)+nx^(m+n-1)+na^mx^(n-1)=(m+n)x^(m+n-1)+ma^nx^(m-1)+...
全部展开
y=(x^m+a^m)(x^n+a^n)
先由乘积的求导法则y`=(x^m+a^m)`(x^n+a^n) +(x^m+a^m)(x^n+a^n) `
=(mx^(m-1))(x^n+a^n) +(x^m+a^m)(nx^(n-1)) =mx^(m+n-1)+ma^nx^(m-1)+nx^(m+n-1)+na^mx^(n-1)=(m+n)x^(m+n-1)+ma^nx^(m-1)+na^mx^(n-1)
y=sin^4(3x)*cos^3(4x)= y=(sin^4(3x))`cos^3(4x)+ sin^4(3x)(cos^3(4x))`=12sin^3(3x)cos3x*cos^3(4x)+ sin^4(3x)*12cos^2(4x)(-sin4x)
y`=(2(e^(x/2)+e^(-x/2)))`=e^(x/2)-1/2e^(-x/2)
收起