已知tanx+1/tanx=2/5,x属于(π/4,π/2),求cos2x及sin(2x+π /4)的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:32:54
已知tanx+1/tanx=2/5,x属于(π/4,π/2),求cos2x及sin(2x+π /4)的值
xRR@3SRO^rKɸbYZxK ' zy^έ3>8)bCx[cMq";3sfCi0cv1hr<.KOL;7Z_ lxe7EYjA PAtg-3,b{ouUWK}g ,03k8Q|!{$1_4NDZV9>a)<[IgqS *vMs;phc~s8 ^CUKO\O+rA~VT}^wT.n4

已知tanx+1/tanx=2/5,x属于(π/4,π/2),求cos2x及sin(2x+π /4)的值
已知tanx+1/tanx=2/5,x属于(π/4,π/2),求cos2x及sin(2x+π /4)的值

已知tanx+1/tanx=2/5,x属于(π/4,π/2),求cos2x及sin(2x+π /4)的值
题目错了吧,应该是5/2.因为tanx在(π/4,π/2)上是大于1的
∵tanx在(π/4,π/2)上是单调递增的 令t=tanx,则t∈(1,+∞)
∵t+1/t=5/2 ∴t^2-5/2t+1=0 解得t=2或t=1/2(小于1,舍去)
∴tanx=2
在(π/4,π/2)上,cosx、sinx均为正
由sinx^2+cosx^2=1和sinx/cosx=2得 sinx=2√5/5,cosx=√5/5
∴cos2x=2cosx^2-1=-3/5,
√2sin(2x+π /4)=sin2x+cos2x=2sinxcosx+cos2x=1/5
∴sin(2x+π /4)=√2/10
计算过程可能有误,但方法应该是这样.希望采纳