求以下两个,当x趋于0时的极限,求以下两个,当x趋于0时的极限,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:39:54
求以下两个,当x趋于0时的极限,求以下两个,当x趋于0时的极限,
xSak@+0Hw%%Ʈm\*E2SMDD?(e+N.O/dF|‘y\A+xgvf6ݚM_Ϧ_No>=|ng5:8?IC\?f_u].Yzz( r47zGzo _.mAwM9UԒ&THI"Zf@zJ"1ۦp ºf! .w625W+XqȂTLL I4K4N,mn1` z\@DC=r9!+UeRBDVe @ܙYNmʶ'!60W8\<uOʚ?0&GJhs@+?TjSjR=bmlXcگ,I;'Mnn帡BbZ"*NlkKArãhk*ؤ|MPɱA'|]Q8@d =v-dא67ZN@TM\` |?חq;K5;FS

求以下两个,当x趋于0时的极限,求以下两个,当x趋于0时的极限,
求以下两个,当x趋于0时的极限,
求以下两个,当x


趋于0时的极限,

求以下两个,当x趋于0时的极限,求以下两个,当x趋于0时的极限,
lim(x→0)[√(1+sinx)-1] = lim(x→0)[(1/2)sinx] = 0;
 lim(x→0)[√(1+tanx)-√(1+sinx)]/(x^k)
  = lim(x→0)√(1+sinx)]*lim(x→0){√[(1+tanx)/(1+sinx)]-1}/(x^k)
  = 1*lim(x→0){√[1+(tanx-sinx)/(1+sinx)]-1}/(x^k)
  = 1*lim(x→0){(1/2)[(tanx-sinx)/(1+sinx)]}/(x^k) (等价无穷小替换)
  = (1/2)*lim(x→0)[1/(1+sinx)]*lim(x→0)[(tanx-sinx)/(x^k)]
  = (1/2)*1*lim(x→0)[(tanx-sinx)/(x^k)]
  = (1/2)*lim(x→0)(1/cosx)*lim(x→0)(sinx/x)*lim(x→0){(1-cosx)/[x^(k-1)]}
  = (1/2)*1*1*(1/2) = 1/4,k=3,
  = 0,k3.

看不清