若|a|=2,|b|=1,a,b的夹角为π/3,且向量2a-kb与4a-b垂直,求实数k的值. 解答过程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 07:00:59
若|a|=2,|b|=1,a,b的夹角为π/3,且向量2a-kb与4a-b垂直,求实数k的值. 解答过程
x){ѽ&H&P'Q'KvX>Ɏ]utėFIOv$&=|gll=z //~vʋWt$;z`E:$>ޟd T T_ 35KS, ԯԴ5

若|a|=2,|b|=1,a,b的夹角为π/3,且向量2a-kb与4a-b垂直,求实数k的值. 解答过程
若|a|=2,|b|=1,a,b的夹角为π/3,且向量2a-kb与4a-b垂直,求实数k的值. 解答过程

若|a|=2,|b|=1,a,b的夹角为π/3,且向量2a-kb与4a-b垂直,求实数k的值. 解答过程
|a|=2,|b|=1,a,b的夹角为π/3,
∴a●b=|a||b|cosπ/2=1
向量2a-kb与4a-b垂直
∴(2a-kb)●(4a-b)=0
点开
8|a|²+k|b|²-(2+4k)a●b=0
∵8×4+k-(2+4k)=0
解得:k=10