如图,AO⊥BO,CO⊥DO,O是垂足,∠BOC=50°.求∠AOD的度数.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:57:02
x){}::8hg3?bfGmM
m{ uwy>eϦnгI*ҧ)v6rͣOg~|ғO'<ٱ^<
Pm[93sw`&C 4EBT-zfP/̌^>$u(H
Ccif4o}m젡gXXxg
Ovv ӽN¦ن-Ot=ݷdK3x*X1l-XX] [RmRmY`q+ JG
如图,AO⊥BO,CO⊥DO,O是垂足,∠BOC=50°.求∠AOD的度数.
如图,AO⊥BO,CO⊥DO,O是垂足,∠BOC=50°.求∠AOD的度数.
如图,AO⊥BO,CO⊥DO,O是垂足,∠BOC=50°.求∠AOD的度数.
∵四角之和为360°
又∵AO⊥BO,CO⊥DO
∴∠AOB=90° ∠COD=90°
∵∠BOC=50°
∴∠AOD=360°-∠AOB-∠COD-∠BOC
=360°-90°-90°-50°
=130°
即∠AOD的度数为130度
解 ∵四角之和为360°
又∵AO⊥BO,CO⊥DO
∴∠AOB=90° ∠COD=90°
∵∠BOC=50°
∴∠AOD=360°-∠AOB-∠COD-∠BOC
=360°-90°-90°-50°
=130°
即∠AOD的度数为130度
什么图形啊
水伊微微,你好:
∠BOC=50°
则∠AOC=∠BOD=90°-50°=40°
则∠AOD=∠AOC+∠BOD+∠BOC=130°
∵四角之和为360°
又∵AO⊥BO,CO⊥DO
∴∠AOB=90° ∠COD=90°
∵∠BOC=50°
∴∠AOD=360°-∠AOB-∠COD-∠BOC
=360°-90°-90°-50°
=130°
即∠AOD的度数为130度
如图,AO⊥BO,CO⊥DO,O是垂足,∠BOC=50°.求∠AOD的度数.
如图,AO垂直BO,CO垂直DO,O是垂足,角BOC=50°,求角AOD的度数
如图,等腰梯形ABCD中AD平行BC,点O在梯形ABCD内,连接AO,BO,CO,DO,且BO=CO.求证:AO=DO
如图,在梯形ABCD中,AD‖BC,AC⊥BD,垂足为O.求证:AO·CO+BO·DO=AD·BC
已知如图,在四边形ABCD中,对角线相交于点O,AO=BO=CO=DO,AC⊥BD.求证:四边形ABCD是正方形
如图,AO⊥BO,CO⊥DO,∠AOC:∠BOC=1:5,则∠BOD=______
如图,AO⊥BO,CO⊥DO,∠AOD=4∠BOC,求钝角∠AOD的度数
如图,AO⊥BO,CO⊥DO,∠AOD=4∠BOC,求钝角∠AOD的度数
如图,∠AOB=138°,AO⊥DO,BO⊥CO,则∠COD =
如图,AO⊥CO,BO⊥DO,∠BOC=36°.求∠AOD的度数.
如图:若AO⊥CO,BO⊥DO,且角BOC=α,求角AOD
如图,AB为圆O的直径,M、N分别 是AO、BO的中点 CM⊥AO,DN⊥OB,求证AB=BD证到AC=CO,DO=DB,接下来是?是AC=BD
已知:如图,AC,BD相交于点O,且AO=CO,BO=DO.求证:AB=CD
如图,已知AC,BD相交于O,AO=DO,BO=CO,证明:∠A=∠C
如图,已知AC与BD相交于点O,AO=CO,BO=DO,图中有几对全等三角形
,如图,AO⊥BO,CO⊥DO,试猜想∠AOD和∠BOC在数量上得关系?2.当∠DOC绕点O旋转到图2的位置时 是否成立?并证明
如图,在梯形ABCD中,AD‖BC,AC⊥BD,垂足为O,求证:AO*CO+BO*DO=AD*BC需要详细过程,请写明理由
如图,在△ABC中,AB=AC,BO=CO,求证:AO⊥BC