P为矩形ABCD内任意一点,若PA=3,PB=4,PC=5,则PD长是多少?
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 09:32:25
P为矩形ABCD内任意一点,若PA=3,PB=4,PC=5,则PD长是多少?
P为矩形ABCD内任意一点,若PA=3,PB=4,PC=5,则PD长是多少?
P为矩形ABCD内任意一点,若PA=3,PB=4,PC=5,则PD长是多少?
过P做两边的垂线,交AB、BC、CD、DA于EFGH
ABCD是矩形,所以PE=BF,PF=BE,PG=CF,DF=AE
AP^2=AE^2+BF^2.①
BP^2=BE^2+BF^2.②
CP^2=BE^2+CF^2.③
DP^2=AE^2+CF^2.④
①-②+③
AP^2-BP^2+CP^2=AE^2+BF^2-(BE^2+BF^2)+BE^2+CF^2
=AE^2+CF^2=DP^2
所以DP^2=AP^2-BP^2+CP^2=9-16+25=18
DP=3√2
设AB//DC,AD//BC,A与C,B与D为对角,过P点作直线EG⊥AB、DC,交AB于E,DC于G;作HF⊥AD、BC,交AD于H,BC于F,则根据勾股定理,得
PA^2=AE^2+BF^2......(1)
PB^2=BE^2+BF^2......(2)
PC^2=BE^2+CF^2......(3)
(1)-(2)+(3),得
AE^2+CF^2=P...
全部展开
设AB//DC,AD//BC,A与C,B与D为对角,过P点作直线EG⊥AB、DC,交AB于E,DC于G;作HF⊥AD、BC,交AD于H,BC于F,则根据勾股定理,得
PA^2=AE^2+BF^2......(1)
PB^2=BE^2+BF^2......(2)
PC^2=BE^2+CF^2......(3)
(1)-(2)+(3),得
AE^2+CF^2=PA^2-PB^2+PC^2=3^2-4^2+5^2=18
PD^2=AE^2+CF^2=18
PD=3√2
答:PD=3√2
收起