线段AB过点M(m,0)(m>0),端点A,B到x轴距离之积为2m,以x轴为对称轴,过A、O、B三点作抛物线.若tan∠AOB=-1求m的取值范围.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:26:57
线段AB过点M(m,0)(m>0),端点A,B到x轴距离之积为2m,以x轴为对称轴,过A、O、B三点作抛物线.若tan∠AOB=-1求m的取值范围.
线段AB过点M(m,0)(m>0),端点A,B到x轴距离之积为2m,以x轴为对称轴,过A、O、B三点作抛物线.若tan∠AOB=-1
求m的取值范围.
线段AB过点M(m,0)(m>0),端点A,B到x轴距离之积为2m,以x轴为对称轴,过A、O、B三点作抛物线.若tan∠AOB=-1求m的取值范围.
线段AB过x轴M(m,0),(m>0),端点A,B到x轴的距离之积为2m,设以x轴为对称轴,过A,O,B三点作抛物线,求此抛物线的方程 若tg∠AOB=-1,求m的取值范围
设抛物线方程为y^=2px,坐标A(2pt^,2pt),B(2ps^,2ps),st2pst^-sm=2pts^-tm--->(2pst+m)(s-t)=0,∵s≠t.∴st=-m/(2p)
又:A,B到x轴的距离之积=|2pt||2ps|=2m--->st=-m/(2p^)=-m/(2p)--->p=1
∴抛物线方程为y^=2x
st=-m/2.--->t(-s)=m/2.(1)
Koa=1/t,Kob=1/s
-1=tan∠AOB=(Koa-Kob)/(1+KoaKob)=(s-t)/(st+1)
--->t-s=1+st=1-m/2---->t+(-s)=1-m/2.(2)
由(1)(2):t,-s是关于w的方程w^+(m/2-1)w+m/2=0的两根
--->判别式=(m/2-1)^-2m≥0--->m^-12m+4≥0--->m>6+4√2或0<m<6-4√2
这个问题啊……
高中知识都忘了……
以x轴为对称轴的抛物线的性质都忘啦……
不好意思啊……