请教高数高手一个多元函数微分的求导问题我这个知识点有点混乱,比如有一题:在满足偏导数条件下 F(x,y,z)=0 z=f(x,y)求偏z/偏x .我知道是先将y看做常数 然后就可以写成 Fx+Fz*(偏z/偏x) 注:

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 09:49:32
请教高数高手一个多元函数微分的求导问题我这个知识点有点混乱,比如有一题:在满足偏导数条件下 F(x,y,z)=0 z=f(x,y)求偏z/偏x .我知道是先将y看做常数 然后就可以写成 Fx+Fz*(偏z/偏x) 注:
xWnW#UjLLLJ7RՇQQ23O\2 /196!1d\ ]{0TҨH9/kٞvڦfoh)8:YZ;9i#o3bN.oo NvwZ/Gun{֣tV`nYeErFq-p_h K}+Z?7/Z ?N:2s󒊘x)r+5oG3_}opo&xLgĭ3-Fw[΀6PxV*ŕ&\a&d,gKI a ;[͚֮}|& 򚔐bMo3CTǛ0Q*c?EU%†e?(Oh1`y|Tsmg3(2!TZwS%p9*ɀaJqx0, |RŀF:;`KqFu^2 O 7iT~j;X` fV|e_rȟap΄=T͇B}&F}mzH!CCme=KyZTm݃TRklǧ. \bC[cYZ1jJ{Ndn7c$s>VpHp1IɺvYO\Tm:]QK}iOo$Hp \_,18YHա#Q kQ_$nl7B^17GR#fER#[wX "= ֖/{W]WPi,SB l2B`tfzÖ[:PTj(\FyZXT?d@dޣ ~6WvSzwO뜚=mpw;).yl5/ݧ2 hHoRrO,ݾf5I7pQꮺYNQZ;# Cob=sz$ptHp2RܥC|He$Nu+UKLL: ;vV{94x |iV|\0

请教高数高手一个多元函数微分的求导问题我这个知识点有点混乱,比如有一题:在满足偏导数条件下 F(x,y,z)=0 z=f(x,y)求偏z/偏x .我知道是先将y看做常数 然后就可以写成 Fx+Fz*(偏z/偏x) 注:
请教高数高手一个多元函数微分的求导问题
我这个知识点有点混乱,比如有一题:在满足偏导数条件下 F(x,y,z)=0 z=f(x,y)求偏z/偏x .
我知道是先将y看做常数 然后就可以写成 Fx+Fz*(偏z/偏x) 注:这里不好打 就用Fx代替了 偏F/偏x ,Fz代替偏F/偏z.
那如果是y=sinx 可否仍然把y看做常数啊?仍然用上面的公式求偏z/偏x 如果不行,为什么呢?

请教高数高手一个多元函数微分的求导问题我这个知识点有点混乱,比如有一题:在满足偏导数条件下 F(x,y,z)=0 z=f(x,y)求偏z/偏x .我知道是先将y看做常数 然后就可以写成 Fx+Fz*(偏z/偏x) 注:
多元函数的求导问题
答:实际上你的问题包含了两个问题:
(一).已知方程F(x,y,z)=0能确定一个二元函数:z=f(x,y),其中x和y是两个独立的变量,这时
∂z/∂x=-(∂F/∂x)/(∂F/∂z),∂z/∂y=-(∂F/∂y)/(∂F/∂z).
在求∂F/∂x时把y,z看作常量;在求∂F/∂y时把x,z看作常量;在求∂F/∂z时把x,y看作常量.
(二).已知方程F(x,y,z)=0能确定一个二元函数:z=f(x,y),但其中y=sinx,(即x和y不是两个互相独立的变量,因此实际上z 是x的单变量函数);这时:
dz/dx=-[∂F/∂X+(∂F/∂y)(dy/dx)]/(∂F/∂z)=-[∂F/∂x+(∂F/∂y)cosx]/(∂F/∂z)

你把上面的y看做常数是默认了y不因x的变化而变化,这时你上面说的是对的
但是如你下面的式子y=sinx ,那么y就会随x的变化而变化,此时就不可以把y看做常数
其实多元函数微分,你也不要想得太复杂,你只要把它看成一个复合函数的形式来解,无非就是有了个偏微分的概念,换个符号,本质没有变化,还是求导数而已,只要能仔细的去把函数的复合关系看清楚,一步步的找清每一层复合关系,然后按照一元函...

全部展开

你把上面的y看做常数是默认了y不因x的变化而变化,这时你上面说的是对的
但是如你下面的式子y=sinx ,那么y就会随x的变化而变化,此时就不可以把y看做常数
其实多元函数微分,你也不要想得太复杂,你只要把它看成一个复合函数的形式来解,无非就是有了个偏微分的概念,换个符号,本质没有变化,还是求导数而已,只要能仔细的去把函数的复合关系看清楚,一步步的找清每一层复合关系,然后按照一元函数的微分的解题思路去解就可以 了,只不过把其中的偏导数看清换成偏导数符号就行了

收起

F(x,y,z)=0 确定了函数 z= f(x,y),
Fx' + Fz' * ∂z/∂x = 0 => ∂z/∂x = - Fx' / Fz'
如果y=sinx , 于是 z= f(x), z是x的一元函数,
Fx' + Fy' * cosx + Fz' * dz/dx = 0 => dz/dx = - ( Fx' + Fy' * cosx ) / Fz'

显然不行,首先y是关于x的函数,这就相当于复合函数求导了,再者如果你遇到这类的问题的话,比如z=f(x,y), y=sinx,你不妨把后者带入前者,即z=f(x,sinx),这样就变成了一元函数的复合函数求导了,还是比较简单的!
对于多元函数求偏导,可以将其他的看成常数,是因为想x、y等是相互独立的自变量。但是F(x,y,z)=0 同时也可以看成 y 是x,z的函数啊 为什么第一种情况就行...

全部展开

显然不行,首先y是关于x的函数,这就相当于复合函数求导了,再者如果你遇到这类的问题的话,比如z=f(x,y), y=sinx,你不妨把后者带入前者,即z=f(x,sinx),这样就变成了一元函数的复合函数求导了,还是比较简单的!
对于多元函数求偏导,可以将其他的看成常数,是因为想x、y等是相互独立的自变量。

收起