已知数列{an}的前n项和为Sn,并且满足a1=2,na(n+1)=Sn+n(n+1)(n∈N+)①求{an}的的通项公式②令Tn=(4/5)的n次方*Sn,问是否存在正整数m,对一切正整数n,总有Tn≤Tm?若存在,求出m的值;若不

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 01:56:40
已知数列{an}的前n项和为Sn,并且满足a1=2,na(n+1)=Sn+n(n+1)(n∈N+)①求{an}的的通项公式②令Tn=(4/5)的n次方*Sn,问是否存在正整数m,对一切正整数n,总有Tn≤Tm?若存在,求出m的值;若不
xSoAW& ݝagcBoF.[PԘx"F Vi!F`<imSBBvz_pv7Ӄ`|;l1Ԣ{X!|n$2>kt}!=r 5FGPAq¸_8g' AKesv %F5Β$NfLnnug!_IFvyȼCu<)f1)-A1zӚdR8NS~1]eNu )9ڻ갲yKscԣ';rˆKds 'Sdf% #2L{L0=K΋7Ur%(H&B&YȌDr) $&"hДʢLS ?2++yd׋r"UjH04CE\\ [;q~=G ]e߆WXO\6o_`gxA@=cɜ6)iupqL|0Ƽ-^?ı~/ۅm"pߝDM+1_Ɠr 3zt! be"_7

已知数列{an}的前n项和为Sn,并且满足a1=2,na(n+1)=Sn+n(n+1)(n∈N+)①求{an}的的通项公式②令Tn=(4/5)的n次方*Sn,问是否存在正整数m,对一切正整数n,总有Tn≤Tm?若存在,求出m的值;若不
已知数列{an}的前n项和为Sn,并且满足a1=2,na(n+1)=Sn+n(n+1)(n∈N+)
①求{an}的的通项公式
②令Tn=(4/5)的n次方*Sn,问是否存在正整数m,对一切正整数n,总有Tn≤Tm?若存在,求出m的值;若不存在,说明理由

PS上述文字对应上图

已知数列{an}的前n项和为Sn,并且满足a1=2,na(n+1)=Sn+n(n+1)(n∈N+)①求{an}的的通项公式②令Tn=(4/5)的n次方*Sn,问是否存在正整数m,对一切正整数n,总有Tn≤Tm?若存在,求出m的值;若不
(1)na(n+1)=Sn+n(n+1)
(n-1)an=S(n-1)+(n-1)n
两式相减,得na(n+1)-(n-1)an=an+2n
即a(n+1)=an+2
所以an=2n
(2)Sn=n(n+1)
Tn=(4/5)^n[n(n+1)]
T(n+1)/Tn=4(n+2)/(5n)
当n1
当n=8时T(n+1)/Tn=1
当n>9时T(n+1)/Tn