[微积分][微分中值定理][证明题]设函数f(x)在[0,1]上连续,在(0,1)上可导,且有f(1)=2f(0).证明:在(0,1)上至少存在一点x,使得(1+x) f ' (x) = f(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:57:38
xՑJ@_eoIp5iEB=$7)zɱzQU4jU$Ҵ}dWpvWmѓiY^a:` ♧142t jeWD)ShNmV<=*gWlSTTT4T@<
ޡV4ꪆ&{/8Gi4`Q++F\L#֎`a_ZY]mnqA.!Cp-pDTYCCQqHJYT\gֿ2L.;I\kOzS8!=vJl!|U1Ct"ԍMcՇ jS߭on? 36
[微积分][微分中值定理][证明题]设函数f(x)在[0,1]上连续,在(0,1)上可导,且有f(1)=2f(0).证明:在(0,1)上至少存在一点x,使得(1+x) f ' (x) = f(x)
[微积分][微分中值定理][证明题]
设函数f(x)在[0,1]上连续,在(0,1)上可导,且有f(1)=2f(0).
证明:在(0,1)上至少存在一点x,使得(1+x) f ' (x) = f(x)
[微积分][微分中值定理][证明题]设函数f(x)在[0,1]上连续,在(0,1)上可导,且有f(1)=2f(0).证明:在(0,1)上至少存在一点x,使得(1+x) f ' (x) = f(x)
设g(x)=f(x)/(1+x)
则g(x)在[0,1]连续,在(0,1)可导
且:g(0)=f(0),g(1)=f(1)/2,由条件知:g(0)=g(1)
因此由罗尔定理,存在x∈(0,1),使得
g'(x)=0
即:[f(x)/(1+x)]' = 0
[(1+x)f '(x) - f(x)] / (1+x)^2 = 0
因此:(1+x)f '(x) - f(x) = 0
原式得证