不定积分(0,x)e^(-t²)dt展开成x的幂级数 速求,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 01:32:58
不定积分(0,x)e^(-t²)dt展开成x的幂级数 速求,
x){YϗѦaS[lhnaRtԧ{uLx>Φ绖?Aegtl)4AΆx}K W`cFޣΥqyy:::lztQ̨FH E G AK44tJxTuE,jX AqL5V .kXDPг/.H̳E?

不定积分(0,x)e^(-t²)dt展开成x的幂级数 速求,
不定积分(0,x)e^(-t²)dt展开成x的幂级数 速求,

不定积分(0,x)e^(-t²)dt展开成x的幂级数 速求,
已知
   e^x = ∑(n≥0)[(x^n)/n!],x∈R,
于是,
   e^(-t²) = ∑(n≥0){[(-t²)^n]/n!}
      = ∑(n≥0){[(-1)^n][t^(2n)]/n!},t∈R,
进而
   ∫[0,x]e^(-t²)dt
   = ∑(n≥0)∫[0,x]{[(-1)^n][t^(2n)]/n!}dt
   = ……,x∈R.