设函数f(x)在[a,b ]上连续,且f(a)〈a ,f(b)〉b ,证明:方程f(x)=x 在(a,b )内至少有一实根

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 13:05:09
设函数f(x)在[a,b ]上连续,且f(a)〈a ,f(b)〉b ,证明:方程f(x)=x 在(a,b )内至少有一实根
x){nϦnHӨ|:gEtNB]/{{ΓS457t$*i$YI :/7>gl+AZm+5@5htgs:hxn޳;mh~ }dZvҭ[lƾ-۰iL^73lAnMy:{`ydR*0iTkHkn\k]FTcf POrM;|B${qAb4md3TҺ\

设函数f(x)在[a,b ]上连续,且f(a)〈a ,f(b)〉b ,证明:方程f(x)=x 在(a,b )内至少有一实根
设函数f(x)在[a,b ]上连续,且f(a)〈a ,f(b)〉b ,证明:方程f(x)=x 在(a,b )内至少有一实根

设函数f(x)在[a,b ]上连续,且f(a)〈a ,f(b)〉b ,证明:方程f(x)=x 在(a,b )内至少有一实根
作辅助函数F(x)=f(x)-x,显然在[a,b ]上连续,则
F(a)=f(a)-a,因为f(a)〈a,所以
f(a)-a<0

F(b)=f(b)-b,因为f(b)>b,所以
f(b)-b>0

F(a)F(b)<0
由零点定理,知
方程f(x)=x 在(a,b )内至少有一实根

零点定理,知
方程f(x)=x 在(a,b )内至少有一实根