函数f(x)=[(x^2-x)/(x^2-1)]√(1+1/x^2),x=0为什么是跳跃间断点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 04:22:57
函数f(x)=[(x^2-x)/(x^2-1)]√(1+1/x^2),x=0为什么是跳跃间断点
x@_űKֹ"BQ.{D%/.B\hFG¨nNQuNI%Iǣ)~(u1`R$Dz4\gmy彚-(s)gXl1s|-_PU?{)xAVc@~ ;~%B_ 8%9s>)y6Z !UrbvRCݦ®b ?N\3y~5-

函数f(x)=[(x^2-x)/(x^2-1)]√(1+1/x^2),x=0为什么是跳跃间断点
函数f(x)=[(x^2-x)/(x^2-1)]√(1+1/x^2),x=0为什么是跳跃间断点

函数f(x)=[(x^2-x)/(x^2-1)]√(1+1/x^2),x=0为什么是跳跃间断点
化简得到
f(x)=x/(x+1) *√(1+1/x^2)
那么在x>0的时候,
f(x)=1/(x+1) *√(1+x^2)
在x<0的时候,
f(x)= -1/(x+1) *√(1+x^2)
所以x=0时的左极限为 -1,右极限为1,
左右极限都存在且不相等,
所以x=0为跳跃间断点