集合论证明社A B C是任意集合,证明(A - B)-C=A - (B并上C)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 12:31:43
集合论证明社A B C是任意集合,证明(A - B)-C=A - (B并上C)
x){9鄎vXlF%Xdg-y= Nt:ۂNOwn{Y&H4:_`gCm'>ԣldGóm @vk

集合论证明社A B C是任意集合,证明(A - B)-C=A - (B并上C)
集合论证明社A B C是任意集合,证明
(A - B)-C=A - (B并上C)

集合论证明社A B C是任意集合,证明(A - B)-C=A - (B并上C)
和(a-b)-c=a-(b+c)一样