立体几何证明题,只需证出第二问
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:19:26
x_oPƿ
̫ZOa 70iVݨ++$:a!09el(TďBzh+x(\
I/{y6i_yWo֣Qeo|X!P˸5*ɉO>imG]qRQ=gf.g I3fZeXnMKSs^cX$ ұ7Sq%Ѫ),B!a6h4824M!&Z:hF m<9E0mK$)EEBN2:'h ²,ujr2LzIDMz;ׯ˙fZ$лB>zPKԽif(Ȱ9hp~vϦ_}<
FyCG^̘ѕKS;%T?^4b\uKEif(@/q o
Zmy|A_xьA]9z8X88u@: 7ƕ
立体几何证明题,只需证出第二问
立体几何证明题,只需证出第二问
立体几何证明题,只需证出第二问
证明:(2)过点P作PE⊥AB,垂足为点E
因为平面PAB⊥平面ABCD,平面PAB ∩ 平面ABCD=AB,PE⊂平面PAB,PE⊥AB
所以由面面垂直的性质定理可得:
PE⊥平面ABCD
又直线BC在平面ABCD内,那么:PE⊥BC
已知∠PBC=90°,即:PB⊥BC
这就是说BC垂直于平面PAB内的两条相交直线PB和PE
所以:BC⊥平面PAB
又直线BC在平面PBC内
所以:平面PBC⊥平面PAB