求解微分方程dy/dx+y=x满足初始条件y/x=0=2的初解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 10:57:03
求解微分方程dy/dx+y=x满足初始条件y/x=0=2的初解
xNP ]a0ݜF Mz!bԦnl!54W5s3| vU;D@X2)#h%U h3^a:[6-k-Hu?VN/)Gji,"rL|WbLwߒJ HE2f˛|ۀ- t&z'xeEØ<}vzP]M$c71/)ކq%3ѣEǎuh4W Bl}7S

求解微分方程dy/dx+y=x满足初始条件y/x=0=2的初解
求解微分方程dy/dx+y=x满足初始条件y/x=0=2的初解

求解微分方程dy/dx+y=x满足初始条件y/x=0=2的初解
特征根为-1,则y'+y=0的解为y1=ce^(-x)
设特解为y*=ax+b,代入原方程得:a+ax+b=x
对比系数得;a=1,a+b=0
解得a=1,b=-1
因此通解为y=y1+y*=ce^(-x)+x-1
当x=0时,y=C-1=2,得:C=3
所以解为;y=3e^(-x)+x-1

年就和和就不就和和和