limx趋向于0(e^x-(1+2x)^1/2)/ln(1+x^2)等于多少

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 22:16:45
limx趋向于0(e^x-(1+2x)^1/2)/ln(1+x^2)等于多少
xR[KA+B;xYg Z#PC`"2(]Pd D@T䞽<k 굷9]9ߌOg58Z]% K8J(` 9cd>Tn/WWv |ZCO(wFxYњN&5D"t[<9WSqKxm}qQG#=%V>wsKdyVv.-Rxa\ZͼoCur %M''hl\cjps! vV&L@|Y3;ydjlxɉpw&YkH$ Ё~&X^X]1P4osֵeU?)BcFEw^HAǐX$y

limx趋向于0(e^x-(1+2x)^1/2)/ln(1+x^2)等于多少
limx趋向于0(e^x-(1+2x)^1/2)/ln(1+x^2)等于多少

limx趋向于0(e^x-(1+2x)^1/2)/ln(1+x^2)等于多少
利用洛必达法则
lim【x→0】[e^x-(1+2x)^(1/2)]/ln(1+x²)
=lim【x→0】[e^x-(1+2x)^(1/2)]/x²
=lim【x→0】[e^x- (1+2x)^(-1/2)]/(2x)
=lim【x→0】[e^x+(1+2x)^(-3/2)]/2
=(1+1)/2
=1

极限符号就不写了,麻烦
(e^x-(1+2x)^1/2)/ln(1+x^2)=(e^x-(1+2x)^1/2)(e^x+(1+2x)^1/2)/(ln(1+x^2)(e^x+(1+2x)^1/2))
=(e^(2x)-(1+2x))/(2ln(1+x^2)),这项(e^x+(1+2x)^1/2))就等于2
洛必达法则,得
(2e^(2x)-2)/(4x/(1+x^2...

全部展开

极限符号就不写了,麻烦
(e^x-(1+2x)^1/2)/ln(1+x^2)=(e^x-(1+2x)^1/2)(e^x+(1+2x)^1/2)/(ln(1+x^2)(e^x+(1+2x)^1/2))
=(e^(2x)-(1+2x))/(2ln(1+x^2)),这项(e^x+(1+2x)^1/2))就等于2
洛必达法则,得
(2e^(2x)-2)/(4x/(1+x^2))=(e^(2x)-1)/(2x),这项1+x^2就等于1
等价无穷小(e^(2x)-1)=2x,所以
(e^(2x)-1)/(2x)=1

收起