在△abc中,C=3√2+√6,C=60度,求a+b的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 20:03:17
在△abc中,C=3√2+√6,C=60度,求a+b的取值范围
xRN@3p1,C&mWn%c lQ^ Y>tZvë>Vr3sϹܹ'NiĴ\ $eАL^*/fGʯk|Z[gQ?cYcRYQP2b)!Br`3Y7y;OJ[t>[P0##+. d,U`/L4~o =~egScqNjMW yc/0R;gK>Y7Z2^;!DqmZ$b $S(5j"/"V7LFP5J)Dضсs߳BWss'׼Zl}@Fe`x>E їpOތoy oH.ip]9%}]$!im

在△abc中,C=3√2+√6,C=60度,求a+b的取值范围
在△abc中,C=3√2+√6,C=60度,求a+b的取值范围

在△abc中,C=3√2+√6,C=60度,求a+b的取值范围
由正弦定理,
2R=c/sinC=(3√2+√6)/(√3/2)=2√6+2√2 (R为△ABC外接圆半径;)
则a+b=2RsinA+2RsinB
=2R(sinA+sinB)
=2R*2sin(A+B)/2*cos(A-B)/2
=2R*2sinC*cos(A-B)/2
=(2√6+2√2)*cos(A-B)/2
而A+B=120,
0≤(A-B)/2

三角形性质知,a+b>3√2+√6
余弦定理 c^2=a^2+b^2-2cos(C)ab
c^2=a^2+b^2-ab=(a+b)^2-3ab

有:ab<=[(a+b)/2]^2(基本不等式)

得到:(a+b)^2<=4c^2

a+b<=2c=6√2+2√6
所以3√2+√6

你可以由正弦定理,
2R=c/sinC=(3√2+√6)/(√3/2)=2√6+2√2
则a+b=2RsinA+2RsinB
=2R(sinA+sinB)
=2R*2sin(A+B)/2*cos(A-B)/2
=2R*2sinC*cos(A-B)/2
=(2√6+2√2)*cos(A-B)/2
而A+B=120,
0≤(A-B)/2<60,
∴1/2∴(3√2+√6)<a+b≤(6√2+2√6)