高数极限问题 lim (√(1+xsinx)-1)/e^(x^2)-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 09:39:33
高数极限问题 lim (√(1+xsinx)-1)/e^(x^2)-1
xRnP"4;v6ĦbUDBڂ*D A-tP%/pRhSnl9gXv*ϛao{NЬ2^,kkLj}Uu]%gݥqkZubrvvj݀떡Q}% @nJAZi*"W$ċHq*R / N$"4UDԲD@t@D*0OVӋjży2/e XPf2֑k".腮 :20+T (I,( `̪w Q) 2zZ)Ouwq<| F-:~uĠ S4N lerF cdbTyJjqnLOf*ݒT~}AuhfƟ1(쬟}fgpb2X!b={ߎ8jo 6/y 0ZF˩BԃVΡ'3dp{Y9o4`2՝Wt;J)Lx6q -V]Z8?N

高数极限问题 lim (√(1+xsinx)-1)/e^(x^2)-1
高数极限问题 lim (√(1+xsinx)-1)/e^(x^2)-1

高数极限问题 lim (√(1+xsinx)-1)/e^(x^2)-1
lim(x->0) [√(1+xsinx) - 1] / (e^x² - 1)
= lim(x->0) (1+xsinx-1) / x²[√(1+xsinx) + 1],分子有理化,当x->0时e^(x²)-1≈x²
= lim(x->0) sinx/x * 1/[√(1+xsinx) + 1]
= 1 * 1/[√(1+0) + 1]
= 1/2

泰勒展开
分子=1+1/2 * xsinx+o(x^2)-1=1/2 * xsinx+o(x^2)=1/2 * x^2 + o(x^2)
分母=1+x^2+o(x^2)-1=x^2+o(x^2)
所以lim(√(1+xsinx)-1)/e^(x^2)-1=1/2

(1 xsinx)^(1/2)/(e^x-1)

∵Lim(x→0)xsin[x]=0
∴Lim(x→0)(1 xsin[x])^(1/2)=1
∵Lim(x→0)(e^x)=1
∴Lim(x→0)(e^x-1)=0
所以:Lim(x→0)(1 xsinx)^(1/2)/(e^x-1)=∞

利用等价无穷小lim(Xsinx/2)/x^2=sinx/2x=(洛必达法则)cosx/2=1/2