边长为4的正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点.过点P作PF⊥CD于点F……急求高手解答作PE⊥PB交直线CD于点E,设PA=X S△PCE=Y(1)求证:DG=EF(2)当点P在线段AO上时,求Y关于X的函

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 03:09:10
边长为4的正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点.过点P作PF⊥CD于点F……急求高手解答作PE⊥PB交直线CD于点E,设PA=X S△PCE=Y(1)求证:DG=EF(2)当点P在线段AO上时,求Y关于X的函
xU[oG+Rrg+6Re$O&UiV;(6| `lK?;_]~ԇ>Dޝsso9>4[v^oM5t둾 ^FB9Ck.hYekWU. Y{ na~zLKƻ5 Te׫AF;F匣k,_w7N1R'N3 јtvD5 F/+ZTC?:Ac'd>=H}8`!wa{dž~ %IyO[2s7Hc,͐ʙGWn1 U:v}GT1sEVaɘ=֚%` O믫Խ[}F|K΄3AZsp tT FLZN\0K:p~S<ü~!%!^%"%T(P"!${`JH&|(ɐ/$6 $Ջ?@{ ڽ~0)BʗH`0 T $c{t#Hc 9/qNV[|#cU(/s6 T*P̞G r P$UoUNd,QcG8ul!abL+* eM'a"!-x9 yas5,͖PT;͋8)t FAK??yx^͑:>s:P5˕G݈#X3x}X0I{Wa6&78pɸ[Z䰕, q$jV iڊQA&;nߥ[J & \)o9H.uܬ+ ))1 $ / –ΘSe+˔阄JLw*}A:M;-{`UE +"+t[ڼC&Ag udޟu)|f?gݞc(Yw̎ogo^< k )Eo{BNHu1e#˧;S_0?Zt^^w+ɫAg rt

边长为4的正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点.过点P作PF⊥CD于点F……急求高手解答作PE⊥PB交直线CD于点E,设PA=X S△PCE=Y(1)求证:DG=EF(2)当点P在线段AO上时,求Y关于X的函
边长为4的正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点.过点P作PF⊥CD于点F……急求高手解答
作PE⊥PB交直线CD于点E,设PA=X S△PCE=Y
(1)求证:DG=EF
(2)当点P在线段AO上时,求Y关于X的函数关系式及自变量X的取值范围
(3)在点P的运动过程中,△PEC能否为等腰三角形?如果能够,请直接写出PA的长,如果不能,请简单说明理由.
第一问错了,应该是求证:DE=EF。高手们注意了……

边长为4的正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点.过点P作PF⊥CD于点F……急求高手解答作PE⊥PB交直线CD于点E,设PA=X S△PCE=Y(1)求证:DG=EF(2)当点P在线段AO上时,求Y关于X的函
证明:
(1)连接PD,BE
∠BPE=∠BCE=90°,
(BCEP四点共圆,可得∠CBE=∠CPE,∠PCE=∠PBE,
∠CBP=∠CBE+∠PBE=∠CPE+∠PCE=∠PEF
于是有∠CBP=∠CDP=∠PEF)
PF⊥DE,所以DF=EF.
(2)AC=4√2,AP=x,CP=4√2-x,
CF=4-√2/2x=PF,DF=4-CF=√2/2x,CE=4-√2x
y=S△PCE=1/2CE×PF=1/2 x2 -3√2x + 8(0≤x≤2√2)
(3)∠CEP≥90°,若△PEC为等腰三角形,只能是∠CPE=∠ECP=45°,
则PE⊥CE,
因PE⊥PB,则BP∥CD,所以BP∥BA
于是P与AB共线,又P在AC上,所以A与P共点,此时,PA=0

证明:如图(1)连接PD,∵四边形ABCD是正方形,
AC平分∠BCD,CB=CD,△BCP≌△DCP
∴∠PBC=∠PDC,PB=PD
∵PB⊥PE,∠BCD=90°,
∴∠PBC+∠PEC=360°-∠BPE-∠BCE=180°
∠PED=∠PBC=∠PDC,
∴PD=PE,
∵PF⊥CD,
∴DF=EF.
(2)如图,过...

全部展开

证明:如图(1)连接PD,∵四边形ABCD是正方形,
AC平分∠BCD,CB=CD,△BCP≌△DCP
∴∠PBC=∠PDC,PB=PD
∵PB⊥PE,∠BCD=90°,
∴∠PBC+∠PEC=360°-∠BPE-∠BCE=180°
∠PED=∠PBC=∠PDC,
∴PD=PE,
∵PF⊥CD,
∴DF=EF.
(2)如图,过点P作PH⊥AD于点H,
由(1)知:PA= 2PH= 2DF= 2EF
PC= 2CF
∴PC-PA= 2(CF-EF),
即PC-PA= 2CE.

收起

也可延长FP哦!!!

边长为4的正方形ABCD中,点o是对角线AC的中点,P是对角线AC上一动点.边长为4的正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,作PE⊥PB交直线CD于点E,设PA=X S△PCE=Y当点P 在边长为8的正方形ABCD中,点O为AD上一动点(4 正方形ABCD的对角线交于点O,点O是正方形A'B'C'O的一个顶点,如果这两个正方形的边长相等,那么正方形A'B'C'O无论怎样绕顶点O旋转,两个正方形重叠部分的面积总等于正方形ABCD面积的1/4,想一想,为 正方形abcd的对角线相交于点o,点o也是正方形a‘b'c'o的一个顶点,如果两个正方形的边长为2,求两正方形重叠的面积 图中阴影不是重叠部分 长 边长为4的正方形abcd中.边长为4的正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,作PE⊥PB交直线CD于点E,设PA=x,S△PCE=y,(1)求证:DF=EF;(2)当点P在线段AO上时,求y 正方形ABCD的对角线相交于点O,点O是正方形A'B'C'O的一个顶点,如果两个正方形的边长相等且为1,那么正方形A'B'C'O绕着点O旋转的过程中,两个正方形重叠部分的面积是多少?(八上数学新课堂)大 已知正方形ABCD的边长是1,那么以对角线的交点O为圆心,使点c在圆O外的圆的半径是() 正方形ABCD的边长是3cm,点o是正方形ABCD两条对角线的交点,正方形OGEF的边长也是3cm,求重叠部分面积. 正方形ABCD的对角线相交于点O,点O是正方形A'B'C'O的一个顶点,如果两个正方形的边长都等于1, 如图,边长为2的正方形ABCD的对角线相交于点O,点是正方形OEFG的一个顶点.当将正方形OEFG绕点O转动.两个正方形重叠面积是否发生变化,说明理由. 正方形ABCD的对角线交与点O,点O又是正方形EFGO的一个顶点,且这两个正方形的边长为a,那么两个正方形的重叠部分的面积为? 正方形ABCD的对角线交与点O,点O又是正方形EFGO的一个顶点,且这两个正方形的边长为a,那么两个正方形的重叠部分的面积为? 在梯形ABCD中,AB平行CD,两条对角线AC,BD相交于点O,已知AO=BO,求证梯形ABCD是等腰梯形正方形ABCD的边长为1,AC是对角线,AE平分角BAC,EF垂直AC,1求证BE=EF2求BE的边长已知等腰三角形ABCD中,AB=CD,AD平行BC,E是 正方形ABCD的对角线交与O点,点O是正方形A'B'C'O的一个顶点,两正方形如图,正方形ABCD的对角线交与O点,点O是正方形A'B'C'O的一个顶点,两正方形边长相等,正方形A'B'C'D'绕O点无论怎样转动,两正方形 边长为4的正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点.过点P作PF⊥CD于点F作PE⊥PB交直线CD求证:DG=EF 如图所示,正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过 如图,正方形ABCD的边长为4,正方形OEFG的边长为6,O是正方形ABCD的对角线交点,则图中阴影部分面积为4 求解出阴影部分面积为4的过程...3Q3Q.. 正方形ABCD的对角线交与O点,点O是正方形A'B'C'O的一个顶点,正方形ABCD的对角线相交于点O,点O是正方形A′B′C′O的一个顶点.如果两个正方形的边长相等,那么正方形A′B′C′O绕点O无论怎样转动,