求x^2\(1-x^4)dx的积分答案为-1/4ln(1-x^2)-1/2arctanx+c 疑有误注:绝对值可忽略请作出说明,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 04:40:37
求x^2\(1-x^4)dx的积分答案为-1/4ln(1-x^2)-1/2arctanx+c 疑有误注:绝对值可忽略请作出说明,
xRN@-J4.X4`DhBB:3u/xiADu3wbےRq9 (N5*81t!si( f8MJި>UB?吾=6!<H(W[K p>˵d0~n21a8hRR[󍆊I ʙxPA2SdAY2wԲ'$jhB8dgpFʚ%“Rw,'kDmuJ˼ݶ-ݶ&9U&zV5gn_SkJKvgx?%U

求x^2\(1-x^4)dx的积分答案为-1/4ln(1-x^2)-1/2arctanx+c 疑有误注:绝对值可忽略请作出说明,
求x^2\(1-x^4)dx的积分
答案为-1/4ln(1-x^2)-1/2arctanx+c 疑有误
注:绝对值可忽略
请作出说明,

求x^2\(1-x^4)dx的积分答案为-1/4ln(1-x^2)-1/2arctanx+c 疑有误注:绝对值可忽略请作出说明,
答案有错,
∫x^2/(1-x^4)dx
=∫x^2/(1-x^4)dx
=∫x^2/[(1+x^2)(1-x^2)]dx
=∫1/2[1/(1-x^2)-1/(1+x^2)]dx
=1/2∫[1/(1-x^2)-1/(1+x^2)]dx
=1/2∫1/(1-x^2)dx-1/2∫1/(1+x^2)dx
=1/2∫1/2[1/(1-x)+1/(1+x)]dx-1/2∫1/(1+x^2)dx (*)
=1/2∫1/2*1/(1-x)dx+1/2∫1/2*1/(1+x)-1/2∫1/(1+x^2)dx
=-1/4∫1/(x-1)dx+1/4∫1/(x+1)dx-1/2∫1/(1+x^2)dx
=-1/4ln|x-1|+1/4ln|x+1|-1/2arctanx+c
=1/4(ln|x+1|-ln|x-1|)-1/2arctanx+c
=1/4ln(|x+1|/|x-1|)-1/2arctanx+c
=1/2∫1/2[1/(1-x)+1/(1+x)]dx-1/2∫1/(1+x^2)dx (*) 中若把第一个“+”号错化为“-”号,就得到了错结果