1.已知关于x的函数f(x)=x^2+2mx+m(1)若函数f(x)没有零点,求实数m的取值范围(2)当m=2时,求函数g(x)=f(x)/x在区间[1,2]上的最大值,并求出相应的x的值2.已知函数f(x)=x+a/x+b(x>0)其中a,b∈R(1)讨论

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 01:21:58
1.已知关于x的函数f(x)=x^2+2mx+m(1)若函数f(x)没有零点,求实数m的取值范围(2)当m=2时,求函数g(x)=f(x)/x在区间[1,2]上的最大值,并求出相应的x的值2.已知函数f(x)=x+a/x+b(x>0)其中a,b∈R(1)讨论
xX[OY+ie۸(ۏh}(3ٕZY@v8{0&$@blS}S~uvL`O;U_U}Ug~rϜE1k 7icf\`:kM])~X!xޞ[д τ vuO6u @"_ ZkVNY[15'j^1̙MsA)g<w%'(HW`VA%򯮂e9otbehx\)` &޳/O)|?Q釹{IŏUy1_aˏ͵;Sã?c@MJ2l2ef]ƚ}άG}7ed)6DlT2w܀ڣ/WêQ ܒ󹲞w* ѷ޼:{}4l, i 3O+sڦP+Eʽ`z~aKQ XyʙȤ6gz誛9CI0="RWB/_5%cʱ!/^o6A/ܞnV fc|r}x9XO;;{Jz #Sq9H _SjNA)q»P4a+xi.AЅ>^܌zGɛoѻẋ 5oɿz'T9C1&qgn޿(ydֲ fηvQ0҈W[73WWx{*pfazP*YP!jhKqX#f(6`df{A1PCu` xnuUV rñMX{QqgH[x)tMt/x'kj좢MbN°鿖 6<]"!(EꝆF\>f3zYou]xo]au~@:5 ׎m+eg˷"uth|!mU7sz췏N2(]J) }FT XСV*f f< KbȲFfCۜCd r?VgLKŢnJV|{UMͧvO)Y\^coӝU`e~&je}UȽ 9}2r23,gf O,jZƐ]8iz/p_ug19iz'-aߩTxBΕe[ya/CwwU^ЀO`cbu8m>$Ӕ8-c*vGX)MbLY;CCXGCS[Z||tΑUAbL as'eԗR׭g^7B`;/** W {Ov٭VEnI~E/U]%%XVe֣߫ E>`B22FLkP"a:X9k:$އyT5.^%u~*UbfzWm^1rwTZ2<^aǙ7Ү!O!S+ތb!_U5ed55cݵl ?5;I9}!١Sʤ(w *L$ SV(a%+u-.x %I$~*Bv?9xDCup:B+EE_ȟxb2IJ:^*EsCDaQUԶN& 9w:o&Wwq* Va)61D4 Bqw@ZU8⪱zر)RV'ZWP"V% .L DI-/Wt|Xy6&h[b-aJ#t3(ۤx#92ZN}. o')uTB"26ba)+Wvo34`-՟3;{

1.已知关于x的函数f(x)=x^2+2mx+m(1)若函数f(x)没有零点,求实数m的取值范围(2)当m=2时,求函数g(x)=f(x)/x在区间[1,2]上的最大值,并求出相应的x的值2.已知函数f(x)=x+a/x+b(x>0)其中a,b∈R(1)讨论
1.已知关于x的函数f(x)=x^2+2mx+m
(1)若函数f(x)没有零点,求实数m的取值范围
(2)当m=2时,求函数g(x)=f(x)/x在区间[1,2]上的最大值,并求出相应的x的值
2.已知函数f(x)=x+a/x+b(x>0)其中a,b∈R
(1)讨论函数f(x)的单调性
(2)若对于任意的a∈[0.5,1],不等式f(x)≤10在x∈[0.25,1]上恒成立,求b的取值范围

1.已知关于x的函数f(x)=x^2+2mx+m(1)若函数f(x)没有零点,求实数m的取值范围(2)当m=2时,求函数g(x)=f(x)/x在区间[1,2]上的最大值,并求出相应的x的值2.已知函数f(x)=x+a/x+b(x>0)其中a,b∈R(1)讨论
哎··
1.(1)f(x)没有零点 等价于f(x)=0没有根·△=4m²-4m<0 0 (2) m=2 个 g(x) = x + 4 +2/x ≥ 4 + 2sqrt(2) 等号在x=2/x=sqrt(2)时成立 sqrt(2) 就是根号2
可以认为个 g(x)在[1,sqrt2)递减,(sqrt2,2]递增 (第2题有证明)
maxg(x)=max{g(1),g(2)}=7 x取值x=1,x=2均可
2.(1)分情况讨论
①a<0 f(x)=x+a/x+b 由于 x>0,x↑时,x↑,1/x ↓,a<0,a/x↑,x + a/x↑,f(x)也单调递增
②a=0 f(x)递增
③a>0 这个只能用定义了
假设x1>x2>0,下面比较f(x1),f(x2) 的大小
f(x1)-f(x2)=(x1-x2)+a(1/x1-1/x2)
=(x1-x2)(1-a/x1x2)
由前面的假设a>0,x1-x2>0 这个时候f(x1)-f(x2) 的大小取决于1 - a/x1x2的大小
实际上我们无法在x>0这个区间里一概而论的比较1 - a/x1x2的大小,因为情况不能确定,必须将x>0划分
x>sqrt(a) 时, x1x2>a ,所以 1-a/x1x2>0 f(x1)-f(x2)>0 此区间里f(x)↑
0 所以a>0时,f(x)在(0,sqrt(a))↓,(sqrt(a),+∞)↓
(2) 这个就是找出f(x)的在x∈[0.25,1]的最大值了
由前面的分析 只要a>0而不论实际为多少,f(x)在 x∈[0.25,1]最大值不是f(0.25)就是f(1)
于是f(1)=1+a+b≤10
f(0.25)=0.25+4a+b≤10 同时成立,而且对于所有的a∈[0.5,1]都同时成立
那么我们选取a,使得,1+a+b 或者 0.25+4a+b尽可能的大,明显a=1时 0.25+4a+b=4.25+b 最大
于是4.25+b≤10, b≤5.75
回过头来说, b≤5.75 无论如何选取a∈[0.5,1], f(1)≤10且f(0.25)≤10,而对于f(x)x∈[0.25,1]而言,f(x)的最大值不是f(1)就是f(0.25),那么b≤5.75 时,f(x)≤10恒成立·

1,(1)函数f(x)没有零点,故f(x)与x轴没有交点,即判别式⊿<0
所以4m^2-4m<0 得0<m<1
(2),m=2 f(x)=x^2+4x+2
则g(x)=x+4+2/x g′(x)=1-2/x^2≥0时 即√2≤x≤2 单调增
...

全部展开

1,(1)函数f(x)没有零点,故f(x)与x轴没有交点,即判别式⊿<0
所以4m^2-4m<0 得0<m<1
(2),m=2 f(x)=x^2+4x+2
则g(x)=x+4+2/x g′(x)=1-2/x^2≥0时 即√2≤x≤2 单调增
g′(x)=1-2/x^2≤0时 即1≤x≤√2 单调减
函数在 f(1)或f(2)处取得最大值
f(1)=f(2)=7
2,(1)f′(x)=(b-a)/(x+b)^2
①b≥a时 f′(x)≥0 f(x)单调增
②b≤a时 f′(x)≤0 f(x)单调减
(2)①b≥a时 f′(x)≥0 f(x)单调增
则f(x)的最大值为f(1)=(1+a)/(1+b)
不等式f(x)≤10在x∈[0.25,1]上恒成立,即f(1)≤10
(1+a)/(1+b)≤10 化简得(a-10b-9)/(1+b)≤0 显然恒成立
故b≥a时恒成立,即b≥1
②b≤a时 f′(x)≤0 f(x)单调减
则f(x)的最大值为f(0.25)=(0.25+a)/(0.25+b)
不等式f(x)≤10在x∈[0.25,1]上恒成立,即f(0.25)≤10
(0.25+a)/(0.25+b)≤10
化简得(a-10b-2.25)/(0.25+b)≤0
故 a-10b-2.25≤0 0.25+b>0
或 a-10b-2.25≥0 0.25+b<0
故b≤a时 0.5≥b≥-0.125或b<-0.25

收起

∵函数f(x)=x^2+2mx+m,其图像为开口向上的抛物线
(1)若函数f(x)没有零点,即函数图像与X轴无交点
⊿=4m^2-4m<0==>0(2) 当m=2时,函数g(x)= (x^2+4x+2)/x (x≠0)
g(x)=x+4+2/x, g’(x)=1-2/x^2
令x^2-2=0==>x1=-√2,x2=√2
G”(x)=4/x...

全部展开

∵函数f(x)=x^2+2mx+m,其图像为开口向上的抛物线
(1)若函数f(x)没有零点,即函数图像与X轴无交点
⊿=4m^2-4m<0==>0(2) 当m=2时,函数g(x)= (x^2+4x+2)/x (x≠0)
g(x)=x+4+2/x, g’(x)=1-2/x^2
令x^2-2=0==>x1=-√2,x2=√2
G”(x)=4/x^3==> g”(x1)=-4/(2√2)<0,函数g(x)取极大值g(-√2)=4-2√2
g”(x2)=4/(2√2)>0,函数g(x)取极小值g(√2)=4+2√2
g(1)=1+4+2=7,g(2)=2+4+1=7
∴函数g(x)=f(x)/x在区间[1,2]上的最大值为7;
∵函数f(x)=x+a/x+b(x>0)其中a,b∈R
(1) 令f’(x)=1-a/x^2=0==>x1=-√a, x2=√a
F”(x)=2a/x^3
当a>0时,
F”(x1)=-2/√a<0 函数f(x)取极大值;F”(x2)=2/√a>0 函数f(x)取极小值;
又x>0
∴x∈(0,√a)时,函数g(x)单调减,x∈(√a,+∞)时,函数g(x)单调增。
当a=0时,f(x)=x+b,显然,x∈(0,+∞)时,函数g(x)单调增。
当a<0时,f’(x)=1+|a|/x^2>0,x∈(0,+∞)时,函数g(x)单调增。
(2) 由(1)知,a∈[0.5,1],函数f(x)在x=√a处取极小值f(√a)=2√a +b
当a=0.5时,f(x)=x+1/(2x)+b1
x∈[0.25,1]
f(0.25)=x+1/(2x)+b1=2.25+b1;f(√2/2)=√2+b1 (min);f(1)=1+1/2+b1=1.5+b1
当a=1时,f(x)=x+1/x+b2
x∈[0.25,1]
f(0.25)=x+1/x+b2=4.25+b2;f(1)=2+b2 (min);
∴对于任意的a∈[0.5,1],函数f(x)在x∈[0.25,1]上最大为4.25+b2
若对于任意的a∈[0.5,1],不等式f(x)≤10在x∈[0.25,1]上恒成立
则4.25+b2<=10==>0<=b<=5.75

收起