若f(x)=asin(x+π/4)+bsin(x-π/4)(ab≠0)是偶函数,则有序实数对(a,b)可以是__________________.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 21:38:53
若f(x)=asin(x+π/4)+bsin(x-π/4)(ab≠0)是偶函数,则有序实数对(a,b)可以是__________________.
x){ѽ4MB683OB|v h$&=\`l۞}6uӎt>t< :IO?ٽ2$6;zlUn&f]]EȪluLMD7Yga@en<ٱi^bfY-/Ba_\g 'M

若f(x)=asin(x+π/4)+bsin(x-π/4)(ab≠0)是偶函数,则有序实数对(a,b)可以是__________________.
若f(x)=asin(x+π/4)+bsin(x-π/4)(ab≠0)是偶函数,则有序实数对(a,b)可以是__________________.

若f(x)=asin(x+π/4)+bsin(x-π/4)(ab≠0)是偶函数,则有序实数对(a,b)可以是__________________.
f(x)=f(-x)
f(x)=asin(x+π/4)+bsin(x-π/4)
f(-x)=asin(-x+π/4)+bsin(-x-π/4)
=-bsin(x+π/4)-asin(x-π/4)
所以a=-b
我认为只要满足a=-b的都可以