若关于方程x^2+ax+1/x^2+a/x+b=0(其中a,b∈R)有实根,则根号(a^2+b^2)的最小值为 解:由已知f(x)=x^2+1/(x^2)+ax+a/x+b=(x+1/x)^2+a(x+1/x)+b-2令t=x+1/x,则t≤2或t≥2,且f(t)=t^2+at+b-2要使f(x)=0有实根,即使f(t)=0在t≤-
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:30:06
xUNAK
收录互联网各类作业题目,免费共享学生作业习题
头条考试网手机作业共收录了 千万级 学生作业题目
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:30:06