已知x,y均为正实数 且27/x+1/y=1则x²+y²的最小值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/10/20 19:50:55
已知x,y均为正实数 且27/x+1/y=1则x²+y²的最小值为
xRJ@ I&2Fb&$fB1EJXhWR-Vl3%3 L&iRU7ss=;L8Ϝߟd/1xrhd"87lu()j~{$|o{xipLIפ g金P 2tgW݅ኧ$YR4 ]cFr:Q]X @XgigoA*yU X9 ӻ^\)%>wCO }

已知x,y均为正实数 且27/x+1/y=1则x²+y²的最小值为
已知x,y均为正实数 且27/x+1/y=1则x²+y²的最小值为

已知x,y均为正实数 且27/x+1/y=1则x²+y²的最小值为
1/y=1-27/x=(x-27)/x
∴ y=x/(x-27)>0,则 x>27
∴ x²+y²
= x²+x²/(x-27)²
令x-27=A>0
x²+y²
=(A+27)²+(A+27)²/A²
=A²+54A+27²+1+54/A+27²/A²
=(A²+27/A+27/A)+(27²/A²+27A+27A)+730
≥3*(27*27)^(1/3)+3*(27*27*27*27)^(1/3)+730
当且仅当A²=27/A=27/A且27²/A²=27A=27A,即A=3时等号成立
=3*9+3*27*3+730
=270+730
=1000
即x²+y²的最小值是1000