设二次函数f(x)=ax^2+bx+c在区间[-2,2]上的最大值、最小值分别是M、m,集合A={x|f(x)=x},若A={1},且a≥1,记g(a)=M+m,求g(a)的最小值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 21:31:28
设二次函数f(x)=ax^2+bx+c在区间[-2,2]上的最大值、最小值分别是M、m,集合A={x|f(x)=x},若A={1},且a≥1,记g(a)=M+m,求g(a)的最小值.
xR[J@J>211 TЯJџ JMZb؈Ujm]1r LWПpsϹ;3l"x;Ex{[Qm2{i[_{^ .[) ~Dw tJPs7qLB7

设二次函数f(x)=ax^2+bx+c在区间[-2,2]上的最大值、最小值分别是M、m,集合A={x|f(x)=x},若A={1},且a≥1,记g(a)=M+m,求g(a)的最小值.
设二次函数f(x)=ax^2+bx+c在区间[-2,2]上的最大值、最小值分别是M、m,集合A={x|f(x)=x},若A={1},且a≥1,记g(a)=M+m,求g(a)的最小值.

设二次函数f(x)=ax^2+bx+c在区间[-2,2]上的最大值、最小值分别是M、m,集合A={x|f(x)=x},若A={1},且a≥1,记g(a)=M+m,求g(a)的最小值.
f(x)=x,即ax^2+(b-1)x+c=0
A={1},说明a+b-1+c=0
又∵ Δ=(b-1)^2-4ac=0
∴a=c,b=1-2a
f(x)=ax^2+(1-2a)x+a
对称轴为x=1-1/(2a),且 a>1
∴对称轴的取值范围是[1/2,1)
∴x=(2a-1)/2a时有最小值m,且为(4a-1)/4a
当x=-2时有最大值M,且为4a-2+4a+a=9a-2
g(a)=(4a-1)/4a+9a-2=9a - 1/(4a) - 1
g(a)在(0,+∞)上单调递增,所以a=1时有最小值
g(1)=8-1/4=31/4