已知函数f(x)=2^x+1+2^-x+1.(1)判断f(x)的奇偶性,(2)求证f (x)在【0,+∞)上是增函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 13:39:09
已知函数f(x)=2^x+1+2^-x+1.(1)判断f(x)的奇偶性,(2)求证f (x)在【0,+∞)上是增函数
xRN@~9vmk{n$&zN`(A *F VF xg6ě?}3uJ}\vy]?Z/Tgbu,jzGhMx+/"5'~%[w6z#p_u;ln[?*y?q]b+>&WS~TTi }2l0ŕ n<!*nzDÛgjQ`4l#bۆr<.$\FL4J)M $)xi+fė dc6^z3G DWEʹz:uqXͯ/:繻nV! M"BXܵ\"=+WV ?zv "Bw`d-}

已知函数f(x)=2^x+1+2^-x+1.(1)判断f(x)的奇偶性,(2)求证f (x)在【0,+∞)上是增函数
已知函数f(x)=2^x+1+2^-x+1.(1)判断f(x)的奇偶性,(2)求证f (x)在【0,+∞)上是增函数

已知函数f(x)=2^x+1+2^-x+1.(1)判断f(x)的奇偶性,(2)求证f (x)在【0,+∞)上是增函数
f(x)=2^x+1+2^-x+1 =2^x+2*2^x *2^-2 +2^-x =(2^x+2^-x)^2
(1) f(-x)=(2^-x+2^-(-x))^2=f(x),所以为偶函数
(2) 【0,+∞)上是增函数
设在此区间有X1,X2,而且
00,
2^-x2 - 2^-x1=1/(2^x2) -1/(2^x1) = 2^x1-2^x2 / 2^x2 *2^x1 >0,
所以f(x2)-f(x1)>0,所以为增函数

f(-x)=2^(-x+1)+2^(x+1)=f(x),所以f(x)是偶函数。
(2)求导。f(x)~=2^(x+1)ln2-2^(-x+1)ln2
=[2^(x+1)-2^(-x+1)]ln2
因为在【0,+∞)上2^(x+1)-2^(-x+1)>0所以即f(x)导数为正,所以是增函数。