已知数列{an}的前n项和为Sn=n^2+1,数列{bn}满足:bn=2/(an+1),且前n项和为Tn,设Cn设Cn=T(2n+1)-Tn.求bn通项以及Cn增减性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 02:46:00
已知数列{an}的前n项和为Sn=n^2+1,数列{bn}满足:bn=2/(an+1),且前n项和为Tn,设Cn设Cn=T(2n+1)-Tn.求bn通项以及Cn增减性
xO@J@igrPK^[YE\ti)[(+TnS:ԯIdS] x0L{SkxtN 㗬77_̾7Sp%Q_-_J,PYt@~eP^x \sq5a=0>׼g_H:[XV^S´)Qi  LlP?|aS_)2|eA)T]!8>^8)#16J%sM}X'N24ehdB҉m`3}l@`ԫY-'UXx-< {^f:?W.MdqbDVNIʝ T!/f{,LYG}nAyx#_ 4Uд QD̑'eWVjXOY1eeSiGlj[^W(rT7Sv z Dr$ٕ[F] Do@I+E.'̬wJ@s]6-OwW>Ud|0]^\$,

已知数列{an}的前n项和为Sn=n^2+1,数列{bn}满足:bn=2/(an+1),且前n项和为Tn,设Cn设Cn=T(2n+1)-Tn.求bn通项以及Cn增减性
已知数列{an}的前n项和为Sn=n^2+1,数列{bn}满足:bn=2/(an+1),且前n项和为Tn,设Cn
设Cn=T(2n+1)-Tn.求bn通项以及Cn增减性

已知数列{an}的前n项和为Sn=n^2+1,数列{bn}满足:bn=2/(an+1),且前n项和为Tn,设Cn设Cn=T(2n+1)-Tn.求bn通项以及Cn增减性
a1=S1=2
当n≥2时,an=Sn-S(n-1)=n²+1-(n-1)²-1=2n-1
则b1=2/3
当n≥2时,bn=2/(an+1)=2/(2n-1+1)=1/n
Tn=2/3+1/2+1/3+……+1/n
Cn=T(2n+1)-Tn=1/(n+1)+1/(n+2)+……+1/(2n+1)
当n=k时,
Ck=1/(k+1)+1/(k+2)+……+1/(2k+1)
当n=k+1时,
C(k+1)=1/(k+2)+1/(k+3)+……+1/(2k+1)+1/(2k+2)+1/(2k+3)
C(k+1)-Ck=1/(k+2)+1/(k+3)+……+1/(2k+1)+1/(2k+2)+1/(2k+3)-[1/(k+1)+1/(k+2)+……+1/(2k+1)]
=1/(2k+2)+1/(2k+3)-1/(k+1)
=1/(2k+3)-1/(2k+2)

当n≥2且n∈N+时:an=Sn-S(n-1)=n²+1-(n-1)²-1=2n-1
当n=1时:a1=S1=1²+1=2不满足上式
2 ,n=1
∴an={2n-1,n≥2且n∈N+
∴ 2 /2+1=2/3 ,n=1
bn={2/(2n-1+1)...

全部展开

当n≥2且n∈N+时:an=Sn-S(n-1)=n²+1-(n-1)²-1=2n-1
当n=1时:a1=S1=1²+1=2不满足上式
2 ,n=1
∴an={2n-1,n≥2且n∈N+
∴ 2 /2+1=2/3 ,n=1
bn={2/(2n-1+1)=1/n ,n≥2且n∈N+
C(n+1)-C(n)=T(2n+3)-T(n+1)-T(2n+1)+Tn
=T(2n+3)-T(2n+1)-[T(n+1)-Tn]
=b(2n+3)+b(2n+2)-b(n+1)
=1/(2n+3)+1/(2n+2)-1/(n+1)
=(-1)/[2(2n+3)(n+1)]
∵n∈N+
∴C(n+1)-C(n)<0
∴C(n+1)<C(n)
∴{Cn}单调递减

收起