数列{an}的前n项和为Sn=1/2n²+pn,{bn}的前n项和为Tn=[2(n次方)]-1,且a4=b4.(1)求数列{an}、{bn}公式;(2)若对于数列{cn}有cn=an·bn,请求出数列{cn}的前n项和Rn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:34:54
数列{an}的前n项和为Sn=1/2n²+pn,{bn}的前n项和为Tn=[2(n次方)]-1,且a4=b4.(1)求数列{an}、{bn}公式;(2)若对于数列{cn}有cn=an·bn,请求出数列{cn}的前n项和Rn
xVMo@+H*[vmUX~D s_EiӀJ?&D)Q*%M# !')p/tv5ƸU.U޼Y{fUݯn^an ܝU`{g+Z2fH6>= ߪ1aφ<Ǐsnw``_wꭏ\c㏍5F+02<`d圧S JU(Xz+^ee­MRf˂AfTIYmftۤؒ`"@*"c46а24+ڥ@*O <,rm1-`j,J{@$~`$ 6d¼1 ][>6Ǎd2pwdĽusc6'Zl@ӀɆ9(CVPNaaq~Q($BGa`gVL )/&u(Qx48*-^ \?lpY T1vJ$ RidB7Hـ(3gg%+y:5-o#||B^hňͽɗqscrvE0 gT47Ab D`ypa"=?X

数列{an}的前n项和为Sn=1/2n²+pn,{bn}的前n项和为Tn=[2(n次方)]-1,且a4=b4.(1)求数列{an}、{bn}公式;(2)若对于数列{cn}有cn=an·bn,请求出数列{cn}的前n项和Rn
数列{an}的前n项和为Sn=1/2n²+pn,{bn}的前n项和为Tn=[2(n次方)]-1,且a4=b4.(1)求数列{an}、{bn}
公式;(2)若对于数列{cn}有cn=an·bn,请求出数列{cn}的前n项和Rn

数列{an}的前n项和为Sn=1/2n²+pn,{bn}的前n项和为Tn=[2(n次方)]-1,且a4=b4.(1)求数列{an}、{bn}公式;(2)若对于数列{cn}有cn=an·bn,请求出数列{cn}的前n项和Rn
(1)
∵Sn=(1/2)n^2+pn,Tn=2^n-1
∴S3=9/2+3p,S4=8+4p,T3=7,T4=15
∴a4=S4-S3=(8+4p)-(9/2+3p)=7/2+p,b4=T4-T3=15-7=8
∵a4=b4
∴7/2+p=8
∴p=9/2.
∴Sn=(1/2)n^2+(9/2)n
∴a1=S1=5,S(n-1)=(1/2)(n-1)^2+(9/2)(n-1)=(1/2)n^2+(7/2)n-4(n≥2)
∴an=Sn-S(n-1)=[(1/2)n^2+(9/2)n]-[(1/2)n^2+(7/2)n-4]=n+4(n≥2)
∵a1=5=1+4
∴数列{an}的通项公式为an=n+4.
∵Tn=2^n-1
∴b1=T1=1,T(n-1)=2^(n-1)-1(n≥2)
∴bn=Tn-T(n-1)=(2^n-1)-[2^(n-1)-1]=2^(n-1)(n≥2)
∵b1=1=2^(1-1)
∴数列{bn}的通项公式为2^(n-1).
(2)cn=(n+4)×2^(n-1)
则Rn=5×1+6×2+7×2^2+…+(n+4)×2^(n-1)
2Rn= 5×2+6×2^2+…+(n+3)×2^(n-1)+(n+4)×2^n
两式相减:-Rn=5+2+2^2+…+2^(n-1)-(n+4)×2^n
=5+2[1-2^(n-1)]/(1-2)-(n+4)×2^n
=5+2^n-2-(n+4)×2^n
=3-(n+3)×2^n
那么Rn=(n+3)×2^n-3.

(1)对于an:
Sn=1/2n²+pn 1;
S(n-1)=1/2(n-1)²+p(n-1) 2;
1-2,得:an=n-1/2+p (n>=2);
a1代入符合,所以 an=n-1/2+p
对...

全部展开

(1)对于an:
Sn=1/2n²+pn 1;
S(n-1)=1/2(n-1)²+p(n-1) 2;
1-2,得:an=n-1/2+p (n>=2);
a1代入符合,所以 an=n-1/2+p
对于bn:
Tn=2^n-1 3;
T(n-1)=2^(n-1)-1 4;
3-4,得 bn=2^(n-1) (n>=2);
b1代入符合,所以 bn= 2^(n-1)
所以 a4=7/2+p b4=8 所以p=9/2;
所以 an=n+4; bn= 2^(n-1);
(2)cn=an·bn=(n+4)·2^(n-1);
Rn=5×1+6×2+7×2^2+…+(n+4)×2^(n-1); 5;
2Rn= 5×2+6×2^2+…+(n+3)×2^(n-1)+(n+4)×2^n; 6;
6-5,得 Rn=-5-(2+2^2+2^3...+2^(n-1))+(n+4)×2^n;
中间部分利用等比数列求和,得 Rn=-5-(2^n-2)+(n+4)×2^n;
化简,得 Rn=(n+3)×2^n-3;

收起

1、an=S(n)-S(n-1)=1/2n²-1/2(n-1)²
bn=T(n)-T(n-1)=2的(n-1)次方

数列{an}中,an=-2n+2*(-1)^n,则数列{an}的前n项和sn为 数列{an}的前n项和为sn=2n平方+1则{an} 已知数列{an}的前n项和为Sn,an+Sn=2,(n 数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列 数列{an},中,a1=1/3,设Sn为数列{an}的前n项和,Sn=n(2n-1)an 求Sn 已知数列{an}的前n项和为Sn,若a1=1/2,Sn=n^2an-n(n-1)求Sn,an An=2An-1+2^n+2,n》2,A1=2,Sn为数列{An}的前N项和,证明Sn>n^3+n^2 已知:sn为数列{an}的前n项和,sn=n^2+1,求通项公式an. 数列an ,a1=1,前n项和为Sn ,正整数n对应的n an Sn 成等差数列.1.证明{Sn+n+2}成等比数列,2.求{n+2/n(n+1)(1+an)}前n项和 数列{an}的前n项和为Sn,Sn=1/3(an-1)(n属于N*)(1)求a1,a2(2)求证数列{an}是等比数列. 已知数列an的前n项和为sn sn=3(的n次方)+1求数列an 数列{an}的前n项和记为sn,已知a1=1,an+1=((n+2)/n)sn(n∈n+),证明:(1)数列{sn/n}是等比数列;(2)sn+1=4an 详细 (1)已知数列an的前n项和为sn满足sn=an²+bn,求证an是等差数列(2)已知等差数列an的前n项和为sn,求证数列sn/n也成等差数列 数列{an}的前n项和为Sn,a1=1,a(n+1)=2 Sn (n为正整数)..数列{an}的前n项和为Sn,a1=1,a(n+1)=2Sn (n为正整数)(1)求数列{an}的通项(2)求数列{n an}的前n项和Tn 数列:已知数列[An]前n项和为Sn a1=1 An+1=2Sn 求【An] 求【n-An]前n项和Sn数列:已知数列[an]前n项和为Sn,a1=1 ,a[n+1]=2Sn,求[an]通项,求[n-an]前n项和Sn.注:a[n+1]指a 的下标为n+1而不是以n为下标的a加上1. 已知数列 {an} 的前N项和为Sn=3n^2+2n-1 求an 已知数列{an}的通项公式an=log2[(n+1)/(n+2)](n∈N),设其前n项的和为Sn,则使Sn 已知数列{an}的前N项和sn=n^2+n+1,an是否为等差数列?