若x/3=y/1=z/2,且xy+yz+zx=99,则2x^2+12y^2+9z^2=

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 10:15:27
若x/3=y/1=z/2,且xy+yz+zx=99,则2x^2+12y^2+9z^2=
x?N0Ư=;D5ع/t@,'JE XHD0" %4axSb{k8Z)i%#Qs%D23'p]ݺu*Dh&D]u0OTB/q7^]vM-=j1$A(Ʈo!K9(OgVXy3D퍂e $,mJ OvhYLh:$`Q:t

若x/3=y/1=z/2,且xy+yz+zx=99,则2x^2+12y^2+9z^2=
若x/3=y/1=z/2,且xy+yz+zx=99,则2x^2+12y^2+9z^2=

若x/3=y/1=z/2,且xy+yz+zx=99,则2x^2+12y^2+9z^2=
令X=3K Y=K Z=2K 代入得:3K^2+2K^2+6K^2=99 所以K=3或-3,故X^2=81 Y^2=9 Z^2=36 所以原式=594

用代数法:
z=2y,x=3y代入xy+yz+zx=99得:3Y^2+2Y^2+6Y^2=99
解得:y^2=9,所以:Z^2=4Y^2=36;X^2=9Y^2=81
所以:2x^2+12y^2+9z^2=162+108+324=594.