六年级上册奥数应用题11道,请快一些,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:56:47
六年级上册奥数应用题11道,请快一些,
x[R[ǖ~nR5'䄜pU*30ɥ 0El6BI{kʯ0ջwk#rr2s1JlիW^?nwp!n? :X.p!:ۃ͞m2eK?|9|5'FMݷzÚʒ(Mj?Ƨ}!VO#I*3+h7հ9k)50pΰ$?^`*}A~**;. kaMi,JxYqc#ܽ9 گ1XGcH^_Jƛe4+[bfLjX0 r/ w늙7axVkkҞs_g6vxBE΂aS'"zA>(`aq)Ij78SĒDLA* \ć6aX)I)MXh,Ja uڎ#y>F5 VE @1Mڳb!6 bE3謋]xQ _L^SlU2AUR1 na֕) X?ta~88Pb0Eeۣ,{S,Vϱb"hoChU)6zbREf6-1$E8yRMߥ 'L0-nsLb7OsLf𗕁H3hΜ;s26Q'%?5 WA % Z6m[=3 P ʼ&x5z[e)%Õ ^佲 TMcj)Ww=4v&c]X*`PSf*HF\@<@5˳(Q bwL/Lŷ?. ͕djsήRtc;c p&4tvw$&ɦ'x}0y %x>0byMh:ՇXaVN&tԇmjz0(C;L42E#YQǛ*5&i::cYG u5J]Jƌ*U2 8F7_4rOFJeqz7p>:AgiN?VX ~܈,NUʵ.566E5.~U2SըJ,Ca2Yɨ( L]aNȮAwѥEN*y2t!Sի[(U=$?K?beFTH澝?SjGG/T_QpX֠y'_ʄ.DgMkW^0rCRyON)JdD/`9!fn,F )! #hJ}n]K=ib0=GuDg+CgJp)ß{K}~B N˧6AY-gpԴ_&T>|rG ye[_u*QFD5Mhw]o_C4js2łB %NRe!wjBMA(KaǝYeˌ4W&[Kv8_=>'3!-tFZ|Q)Jg;Yi)"YN޿=:nA H# ׄdה29ΎR+Eisy<E*Q˙Kyf2=EbW[cl>WS9p}$>ёt',_+u ~Dot<`Mp$ Æezr'a\,A⵮o=FcVϊLwkN? RfdʫϾ;gYAO=X. j}^T_§-s.15]eo"熗MdTw)ӲH?;[_+4bʣJ~c1z8 Ȋ[@3 HTݧʗK=I4tg]9>M ПbM\ ÷Ǯmx{ADy_{3{:k  85GpNN:H>Ru-]P磳>=yZ*}hE(weEʝzm֦S$C*pL~1>' NE*bgbZM&yׂDe$ʒv (<ϰ@&W!κ1m'Ƞ0h$>Μ@2E46C\hqX0(HPOJGTkglBqG%& 5eC,0_xQ4TSP#-WAOKMsc0.1sYYb]ВVp<[e4`h|riQ!tZ(WD/BUM(F升;??쪻y|پR`hde bYk)U,`H/6yF#K*Qf T~hyjO 'QX٦(cAZ Qcu%܂ڝ[tR8|g,^H'7V{<ݩi~Pսdidݛӂt#?md`OF&LBt@wq)vMGhtEH8_o(%b+E~֌K#Rh$ěAWEd2zcMzzvb{G>璤4vcԦA tn0rʥ]+?L8~ĺRߋ>2&UiLgUϺe)M$)Tpכg{`%Iɢ&xyj8?m͖֫^ɼlҼ4 a Zz3)!nį{--h.AK43[;C&|,9it4l1 " #͢ ;ΤtŖJ9 s=RRVRil$5o*璟vz~3m S~c1hԳ;i`_^ # /Wy|KVyr'wėa~COKʇTt`|^b,rw*!ߔ4a,PM-1 ,djusVA}(bŽNOY}5?kџs8 Ɯe 噲esmc1ME sLo6S&W$ZB%jƦ ?񙤍78`LسŶgS(%T']kOPJkkso+y^iT[t6 bculk4Ka*:,'ŰL}C< #국6OSL:~iWgA_

六年级上册奥数应用题11道,请快一些,
六年级上册奥数应用题11道,请快一些,

六年级上册奥数应用题11道,请快一些,
在12千克含盐15%的盐水中加水,使盐水中含盐9%,需要加水多少千克?
设需要加水X千克;12×15%÷9%=12+X,1.8÷9%=12+X,20=12+X,20-12=X,8=X
答:需要加水8千克.、
有含盐15%的盐水20千克,要使盐水含盐20%,需要加盐多少千克?
设需要加盐X千克;20×15%+X=20%×(X+20),3+X=1/5X+1,X=5/4
答:需要加盐5/4千克.
有一种糖水的浓度为35%,现在用这种糖水多少千克加多少千克的水才能稀释成800千克浓度是1.75%的糖水?
甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?
1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小时后进水量
1-45/80=35/80表示还要的进水量
35/80÷(9/80-1/10)=35表示还要35小时注满
答:5小时后还要35小时就能将水池注满.
修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成.如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九.现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?
由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效.
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成.只有这样才能“两队合作的天数尽可能少”.
设合作时间为x天,则甲独做时间为(16-x)天
1/20*(16-x)+7/100*x=1
x=10
答:甲乙最短合作10天
一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成.现在先请甲、丙合做2小时后,余下的乙还需做6小时完成.乙单独做完这件工作要多少小时?
由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量
(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量.
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1.
所以1-9/10=1/10表示乙做6-4=2小时的工作量.
1/10÷2=1/20表示乙的工作效率.
1÷1/20=20小时表示乙单独完成需要20小时.
答:乙单独完成需要20小时.
一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天.已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?
由题意可知
1/甲+1/乙+1/甲+1/乙+……+1/甲=1
1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1
(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)
1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)
得到1/甲=1/乙×2
又因为1/乙=1/17
所以1/甲=2/17,甲等于17÷2=8.5天
师徒俩人加工同样多的零件.当师傅完成了1/2时,徒弟完成了120个.当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?
答案为300个
120÷(4/5÷2)=300个
可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个.
一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵.单份给男生栽,平均每人栽几棵?
答案是15棵
算式:1÷(1/6-1/10)=15棵
一个池上装有3根水管.甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完.现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?
答案45分钟.
1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数.
1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水.
1/2÷18=1/36 表示甲每分钟进水
最后就是1÷(1/20-1/36)=45分钟.
某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?
答案为6天
由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:
乙做3天的工作量=甲2天的工作量
即:甲乙的工作效率比是3:2
甲、乙分别做全部的的工作时间比是2:3
时间比的差是1份
实际时间的差是3天
所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期
方程方法:
[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1
解得x=6

1、某村要挖一条长2700米的水渠,已经挖了1050米,再挖多少米正好挖完这条水渠的2/3?
  2、某校少先队员采集树种,四年级采集了1/2千克,五年级比四年级多采集1/3千克,六年级采集的是五年级的6/5。六年级采集树种多少千克?
  3、仓库运来大米240吨,运来的大豆是大米吨数的5/6,大豆的吨数又是面粉的3/4。运来面粉多少吨?
  4、甲筐苹果9/10千克,把甲...

全部展开

1、某村要挖一条长2700米的水渠,已经挖了1050米,再挖多少米正好挖完这条水渠的2/3?
  2、某校少先队员采集树种,四年级采集了1/2千克,五年级比四年级多采集1/3千克,六年级采集的是五年级的6/5。六年级采集树种多少千克?
  3、仓库运来大米240吨,运来的大豆是大米吨数的5/6,大豆的吨数又是面粉的3/4。运来面粉多少吨?
  4、甲筐苹果9/10千克,把甲的1/9给乙筐,甲乙相等,求乙筐苹果多少千克?
  5、一桶油倒出2/3,刚好倒出36千克,这桶油原来有多少千克?
  6、甲、乙两个工程队共修路360米,甲乙两队长度比是5 : 4,甲队比乙队多修了多少米?
  7、服装厂第一车间有工人150人,第二车间的工人数是第一车间的2/5,两个车间的人数正好是全厂工人总数的5/6,全厂有工人多少人?
  8、一批水果120吨,其中梨占总数的2/5,又是苹果的4/5,苹果有多少千克?
  9、甲乙两数的和是120,把甲的1/3给乙,甲、乙的比是2:3,求原来的甲是多少?
  10、小红采集标本24件,送给小芳4件后,小红恰好是小芳的4/5,小芳原有多少件?
  11、两桶油共重27千克,大桶的油用去2千克后,剩下的油与小桶内油的重量比是3:2。求大桶里原来装有多少千克油?
  12、一个长方体的棱长和是144厘米,它的长、宽、高之比是4:3:2,长方体的体积是多少?
  13、小红有邮票60张,小明有邮票40张,小红给多少张小明,两人的邮票张数比为1:4?
  14、王华以每小时4千米的速度从家去学校,1/6小时行了全程的2/3,王华家离学校有多少千米?
  15、3台织布机3/2小时织布72米,平均每台织布机每小时织布多少米?
  16、一辆汽车行9/2千米用汽油9/25升,用3/5升汽油可以行多少米?
  17、有一块三角形的铁皮,面积是3/5平方米。它的底是3/2米,高是多少米?
  18、水果店运来梨和苹果共50筐,其中梨的筐数是苹果的2/3,运来梨和苹果各多少筐?
  19、用24厘米的铁丝围成一个直角三角形,这个三角形三条边长度的比是3∶4∶5,这个直角三角形的面积是多少平方厘米?斜边上的高是多少厘米?
  20、一个长方形的周长是49米,长和宽的比是4∶3,这个长方形的面积是多少平方米?

收起

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?
2、2.3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?
3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?
4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张...

全部展开

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?
2、2.3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?
3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?
4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)
6.学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?
7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?
9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?
10.一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?
答案;
1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。
一把椅子的价钱:
288÷(10-1)=32(元)
一张桌子的价钱:
32×10=320(元)
答:一张桌子320元,一把椅子32元。
2、想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
45+5×3
=45+15
=60(千克)
答:3箱梨重60千克。
3、想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。
4×2÷4
=8÷4
=2(千米)
答:甲每小时比乙快2千米。
4、想:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
0.6÷[13-(13+7)÷2]
=0.6÷[13-20÷2]
=0.6÷3
=0.2(元)
答:每支铅笔0.2元。
5、想:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。
下午2点是14时。
往返用的时间:14-8=6(时)
两地间路程:(40+45)×6÷2
=85×6÷2
=255(千米)
答:两地相距255千米。
6、想:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)] 千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快( 4.5-3.5)千米,由此便可求出追赶的时间。
第一组追赶第二组的路程:
3.5-(4.5- 3.5)=3.5-1=2.5(千米)
第一组追赶第二组所用时间:
2.5÷(4.5-3.5)=2.5÷1=2.5(小时)
答:第一组2.5小时能追上第二小组。
7、想:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。
乙仓存粮:
(32.5×2+5)÷(4+1)
=(65+5)÷5
=70÷5
=14(吨)
甲仓存粮:
14×4-5
=56-5
=51(吨)
答:甲仓存粮51吨,乙仓存粮14吨。
8、想:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。
乙每天修的米数:
(400-10×4)÷(4+5)
=(400-40)÷9
=360÷9
=40(米)
甲乙两队每天共修的米数:
40×2+10=80+10=90(米)
答:两队每天修90米。
9、想:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。
每把椅子的价钱:
(455-30×6)÷(6+5)
=(455- 180)÷11
=275÷11
=25(元)
每张桌子的价钱:
25+30=55(元)
答:每张桌子55元,每把椅子25元。
10、想:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。
(7+65)×[40÷(75- 65)]
=140×[40÷10]
=140×4
=560(千米)
这些行不?

收起