已知x+y=1,xy=3/16,求x^3y-2x^2y^2+xy^3的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 02:10:28
x]KPǿJĦ[8/" AW!9wkeofDZjRDjn(y6wгbQ:{^{$c`/qHD%{'d"p"D & :MQPVHɘ>_pxbM$A gVߊqU1P<e)}ٲot|6Յuw$jkK(:5eibˌ+I/WoXznT4[Ks33
n> aU7ϊf1M7cY7P[ hm_p[IEZM/P/S#2̸OthX^Ȩ)8MO^謻sgs?fӺ]qQs߽vrL_L~#ާ:c&sZ'/T12D@7oDko*
已知x+y=1,xy=3/16,求x^3y-2x^2y^2+xy^3的值
已知x+y=1,xy=3/16,求x^3y-2x^2y^2+xy^3的值
已知x+y=1,xy=3/16,求x^3y-2x^2y^2+xy^3的值
x^3y-2x^2y^2+xy^3
=xy(x²-2xy+y²)
=xy(x-y)²
=3/16(x-y)²
=3/16[(x+y)²-4xy]
=3/16(1-3/4)
=3/16x1/4
=3/64
很高兴为您解答,【the1900】团队为您答题.
请点击下面的【选为满意回答】按钮,
如果有其他需要帮助的题目,您可以求助我.
原式= xy(x²-2xy+y²)
=xy[(x²+2xy+y²)-4xy]
=xy[(x+y)²-4xy]
=3/16*(1²-4*3/16)
=3/64
x³y-2x²y²+xy³
=(xy)(x²-2xy+y²)
=(xy)(x-y)²
=(xy)[(x+y)²-4xy]
=(3/16)×[1²-4×(3/16)]
=3/64
x^3y-2x^2y^2+xy^3=xy(x²-2xy+y²﹚=xy(x-y)²=xy[﹙x+y﹚²-4xy]=3/16[1²-4×3/16]=3/64