若(a^3-3ab^2+2b^3)/(a+2b)+|a^2+3ab+2b^2-6|=0,则实数a的值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 15:14:24
若(a^3-3ab^2+2b^3)/(a+2b)+|a^2+3ab+2b^2-6|=0,则实数a的值为
xN@_Д) jhy[A0^xQ"FtڲPӰ]igO.fnʩj}boNnwW

若(a^3-3ab^2+2b^3)/(a+2b)+|a^2+3ab+2b^2-6|=0,则实数a的值为
若(a^3-3ab^2+2b^3)/(a+2b)+|a^2+3ab+2b^2-6|=0,则实数a的值为

若(a^3-3ab^2+2b^3)/(a+2b)+|a^2+3ab+2b^2-6|=0,则实数a的值为
(a^3-3ab^2+2b^3)/(a+2b)
=(a³-ab²-2ab²+2b³)/(a+2b)
=[a(a+b)(a-b)-2b²(a-b)]/(a+2b)
=[(a-b)(a²+ab-2b²)]/(a+2b)
=[(a-b)(a-b)(a+2b)]/(a+2b)
=(a-b)²
(a^3-3ab^2+2b^3)/(a+2b)+|a^2+3ab+2b^2-6|=0
(a-b)²+|a²+3ab+2b²-6|=0
则,a-b=0,且a²+3ab+2b²-6=0
由a-b=0,得a=b,
代入,a²+3ab+2b²-6=0,
a²+3a²+2a²-6=0
a²=1
解得a=±1

由题得:(a^3-3ab^2+2b^3)=0 , a^2+3ab+2b^2-6=0 ,a+2b不等于0
a^3-3ab^2+2b^3
=(a^3-2ab^2-a^2b+2b^3)-ab^2+a^2b
=(a^2-2b^2)(a-b)+(a^2b-ab^2)
=(a^2-2b^2)(a-b)+ab(a-b)
=(a-b)(a^2-2b^2+ab)

全部展开

由题得:(a^3-3ab^2+2b^3)=0 , a^2+3ab+2b^2-6=0 ,a+2b不等于0
a^3-3ab^2+2b^3
=(a^3-2ab^2-a^2b+2b^3)-ab^2+a^2b
=(a^2-2b^2)(a-b)+(a^2b-ab^2)
=(a^2-2b^2)(a-b)+ab(a-b)
=(a-b)(a^2-2b^2+ab)
=(a-b)(a^2-b^2+ab-b^2)
=(a-b)[(a+b)(a-b)+b(a-b)]
=(a-b)(a-b)(a+2b)
=(a-b)^2(a+2b)
∵a+2b不等于0,∴(a-b)^2=0 ,
∴a=b,带入a^2+3ab+2b^2-6=0
得:a^2+3a^2+2a^2-6=0
6a^2=6
a^2=1
a=+1,或a=-1
这样详细吗
满意请采纳!谢

收起