有兴趣的教我下如图,在四边形ABCD中,AC与BD交与点O,直线EF分别交AB BD AC DC与点E G H F (1)若AC=BD,E,F 分别是AB,CD的中点,求证∠OGH=∠OHG(2)若AB=CD,G,H分别是BD,AC的中点,与(1)中类似的结论是什么?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 19:01:07
有兴趣的教我下如图,在四边形ABCD中,AC与BD交与点O,直线EF分别交AB BD AC DC与点E G H F (1)若AC=BD,E,F 分别是AB,CD的中点,求证∠OGH=∠OHG(2)若AB=CD,G,H分别是BD,AC的中点,与(1)中类似的结论是什么?
xTNA~ &}KMkG0ЪHUD.QAz!*JK.]<) m6=s3;ߜ3փI\[>< _k/?M?Xz?=Q5׌fgׇ6L {{ UCT:Ř(2Bƒ51 јֽUct(@ `Zʕmoq(4ȤN L/vShnz|9IV7fMF5XN$ w<H޿)pՈV>B%<7 jo wL0YFٳN+9U.dS}ű1Kh%:Xvt\,QRh(wD8ϥE1'ʼD\Bv9&Y n@q 9YNpYqB| ^.H2pqݬ(s+\IޑrBR^> -Oug層@Af([0Ο3䲈MԜ씪Sܶ^Չw[N8X6yY&]S7r/etnYT)2ld)J܆˴A ' ^*ы[ЇMɨHyi|5gapЊ:X' /TSOv^ڐN(ML[$.(0qty]ɠ\'GBcG1 6m @YxYۏ ALN6]3k[ƛwzwh-hA~r^$_ W_ _L#fP x޴ yX,2^O=8ZBԚX.Z

有兴趣的教我下如图,在四边形ABCD中,AC与BD交与点O,直线EF分别交AB BD AC DC与点E G H F (1)若AC=BD,E,F 分别是AB,CD的中点,求证∠OGH=∠OHG(2)若AB=CD,G,H分别是BD,AC的中点,与(1)中类似的结论是什么?
有兴趣的教我下
如图,在四边形ABCD中,AC与BD交与点O,直线EF分别交AB BD AC DC与点E G H F
(1)若AC=BD,E,F 分别是AB,CD的中点,求证∠OGH=∠OHG
(2)若AB=CD,G,H分别是BD,AC的中点,与(1)中类似的结论是什么?请直接写出,不必证明.

有兴趣的教我下如图,在四边形ABCD中,AC与BD交与点O,直线EF分别交AB BD AC DC与点E G H F (1)若AC=BD,E,F 分别是AB,CD的中点,求证∠OGH=∠OHG(2)若AB=CD,G,H分别是BD,AC的中点,与(1)中类似的结论是什么?
(1)若AC=BD,E,F 分别是AB,CD的中点,求证∠OGH=∠OHG
取AD的中点M,连接EM、FM,
则EM‖BD且EM=BD,FM‖AC且FM=AC,
∵AC=BD,∴EM=FM,
∴∠MEF=∠MFE,
而∠MEF=∠OGH,∠MFE=∠OHG,
∴∠OGH=∠OHG
(2)若AB=CD,G,H分别是BD,AC的中点,与(1)中类似的结论是:
∠AEF=∠DFE

(1),取BC的中点M,连EM,FM,因为E,F为中点,AC=BD,则三角形EMF为等腰三角形,设EM交BD于K,MF交AC于N,知角BKM=角CNM=角BOC,再证明相关两三角形相似, 。。。
(2AEF=∠DFE

(1)取ad中点m,连接em、fm,EM//BD,FM//AC,又AC=BD,则EM=FM,∠OGH=MEG,∠OHG=∠MFH,则得出∠OGH=∠OHG。
(2)、∠ABD=∠ACD

第一种 (1)若AC=BD,E,F 分别是AB,CD的中点,求证∠OGH=∠OHG
取AD的中点M,连接EM、FM,
则EM‖BD且EM=BD,FM‖AC且FM=AC,
∵AC=BD, ∴EM=FM,
∴∠MEF=∠MFE,
而∠MEF=∠OGH, ∠MFE=∠OHG,
∴∠OGH=∠OHG
(2)若AB=CD,G,H分别是BD,...

全部展开

第一种 (1)若AC=BD,E,F 分别是AB,CD的中点,求证∠OGH=∠OHG
取AD的中点M,连接EM、FM,
则EM‖BD且EM=BD,FM‖AC且FM=AC,
∵AC=BD, ∴EM=FM,
∴∠MEF=∠MFE,
而∠MEF=∠OGH, ∠MFE=∠OHG,
∴∠OGH=∠OHG
(2)若AB=CD,G,H分别是BD,AC的中点,与(1)中类似的结论是:
∠AEF=∠DFE 1),取BC的中点M,连EM,FM,因为E,F为中点,AC=BD,则三角形EMF为等腰三角形,设EM交BD于K,MF交AC于N,知角BKM=角CNM=角BOC,再证明相关两三角形相似, 。。。
(2AEF=∠DFE

收起