若a,b,c,为△ABC的三边,且a²+b²+c²=ab+bc+ca,请说明△ABC是等边

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 08:01:34
若a,b,c,为△ABC的三边,且a²+b²+c²=ab+bc+ca,请说明△ABC是等边
xRMK17R٬]ruSPG!]][k RPֶ?FԿ$E=$71T"8bٝ%R25ݨxa6,NQ:zOGӸΊ(y>;(y9kNax .e..3$,sAfi`)1 zmBspD˪hw#YAC)Rd:]z:Q_f|a)F'ymnqX'HgsC` v0f]Q#qBZ·kx~}[) Qz8&ռ&7j11'R47~j

若a,b,c,为△ABC的三边,且a²+b²+c²=ab+bc+ca,请说明△ABC是等边
若a,b,c,为△ABC的三边,且a²+b²+c²=ab+bc+ca,请说明△ABC是等边

若a,b,c,为△ABC的三边,且a²+b²+c²=ab+bc+ca,请说明△ABC是等边
a^2+b^2+c^2=ab+bc+ac
a^2+b^2+c^2-ab-bc-ac=0
2a^2+2b^2+2c^2-2ab-2bc-2ac=0
(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+c^2)=0
(a-b)^2+(b-c)^2+(c-a)^2=0
平方大于等于0,相加等于0,若有一个大于0,则至少有一个小于0,不成立.
所以三个都等于0
所以a-b=0,b-c=0,c-a=0
a=b,b=c,c=a
所以a=b=c
所以是等边三角形

两边同乘2
整理,得
(a-b)^2+(b-c)^2+(c-a)^2=0
所以△ABC是等边