两道自主招生试题(数学)1.lim(n趋向于正无穷)[(n+2)^(n+2) *n^n]/(n+1)^2(n+1)2.已知an=(n+2)/[n!+(n+1)!+(n+2)!] 求an前100项的和S100.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:27:34
两道自主招生试题(数学)1.lim(n趋向于正无穷)[(n+2)^(n+2) *n^n]/(n+1)^2(n+1)2.已知an=(n+2)/[n!+(n+1)!+(n+2)!] 求an前100项的和S100.
xTn@ kJ]TjGQ1% (i%PL@)2w^zg&qQVc=sqrkz?cC+߯Nan yaEX;9X d͌fVsɐF4c!f7uI%HOȚŌF+lIP2=_k'|2F?Qw"+;am @Ogٷnsat::0/Cφr `)@VOgr?N  (̅4U%U^) a`] ((mֿl~rEyyObkNV BLlxkxKw~ĪnT-B?e4L1NpLF"F3FGg`[HlX$ƕ}T _Ԡ4DZALK:V1@3i ,{.gЎuZWT\q^Q8-6q_<+ Sr]A6bQLqDž%> W+oAWFb2F_M 3?mm q

两道自主招生试题(数学)1.lim(n趋向于正无穷)[(n+2)^(n+2) *n^n]/(n+1)^2(n+1)2.已知an=(n+2)/[n!+(n+1)!+(n+2)!] 求an前100项的和S100.
两道自主招生试题(数学)
1.lim(n趋向于正无穷)[(n+2)^(n+2) *n^n]/(n+1)^2(n+1)
2.已知an=(n+2)/[n!+(n+1)!+(n+2)!] 求an前100项的和S100.

两道自主招生试题(数学)1.lim(n趋向于正无穷)[(n+2)^(n+2) *n^n]/(n+1)^2(n+1)2.已知an=(n+2)/[n!+(n+1)!+(n+2)!] 求an前100项的和S100.
第一题答案是1.
可以将极限的后面这个式子变形,得到[(n+2)/(n+1)]^(n+1)·[n/(n+1)]^n·[(n+2)/(n+1)],这整个式子求极限.
这三项分别都有极限,前两项主要运用了
lim(n趋向于无穷)(1+1/n)^n=e
的基本求极限公式.注意,条件是n趋向于无穷,就是说既包含了正无穷也包含了负无穷.
所以,前两项裂项可得
[1+1/(n+1)]^(n+1),极限e
[[1+1/(-(n+1))]^(-n)]^(-1),极限1/e
最后结合极限的运算法则分别求三项的极限再相乘即可.
第2题也可以用裂项法求和,先变性到
an=1/[n!·(n+2)]=(n+1)/(n+2)!
到这里一下子没了思路,但我琢磨着这题只能裂项,所以我尝试了下,碰巧上式就等于
1//(n+1)!-1/(n+2)!
所以答案就是1/2-1/102!