已知函数f(x)=1/3x^3+bx^2+cx(b,c∈R)且函数f(x)在区间(-1,1)上单调递增,在区间(1,3)单调递减.1.若b=-2求c的值2.当b=-2时,求f(x)在区间【-1,3】上的最大最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:50:57
已知函数f(x)=1/3x^3+bx^2+cx(b,c∈R)且函数f(x)在区间(-1,1)上单调递增,在区间(1,3)单调递减.1.若b=-2求c的值2.当b=-2时,求f(x)在区间【-1,3】上的最大最小值
xQKJ@> i2.,drP0,%f /J ">[c;I Ƃ;a?cxghv)\eDN5M劃0\QOHt4W0A]qО$[X\PIDՒj*2ًfm ̊P^(PAG>JI y{}?-ɹ弦5Wp.93" [2Z^Sl3e2 QYLۄYǠSHU>$

已知函数f(x)=1/3x^3+bx^2+cx(b,c∈R)且函数f(x)在区间(-1,1)上单调递增,在区间(1,3)单调递减.1.若b=-2求c的值2.当b=-2时,求f(x)在区间【-1,3】上的最大最小值
已知函数f(x)=1/3x^3+bx^2+cx(b,c∈R)且函数f(x)在区间(-1,1)上单调递增,在区间(1,3)单调递减.
1.若b=-2求c的值
2.当b=-2时,求f(x)在区间【-1,3】上的最大最小值

已知函数f(x)=1/3x^3+bx^2+cx(b,c∈R)且函数f(x)在区间(-1,1)上单调递增,在区间(1,3)单调递减.1.若b=-2求c的值2.当b=-2时,求f(x)在区间【-1,3】上的最大最小值
f'(x)=x^2+2bx+c=x^2-4x+c
(1)x=1时,f'(x)=0,得c=3
(2)f(x)=x^3/3-2x^2+3x
f'(x)=x^2-4x+3
f'(x)=0时,x=1,或x=3
极值点:
f(1)=1/3-2+3=4/3
f(3)=9-18+9=0
端点值:
f(-1)=-4/3
所以最大值:4/3
最小值:-4/3