已知x>1 求(x^2-x+3)/(x-1)最小值(用均值不等式求)谢谢
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:30:03
x){}K+mlҨ3ҭ6ר5|6
{x>eӹ@v>T~O
&HZFP]@Cvj3o>PFnXmc
Vd[fcA墨6|ԹQǬh0W*mh56kzdR?X/.H̳ Y
已知x>1 求(x^2-x+3)/(x-1)最小值(用均值不等式求)谢谢
已知x>1 求(x^2-x+3)/(x-1)最小值(用均值不等式求)谢谢
已知x>1 求(x^2-x+3)/(x-1)最小值(用均值不等式求)谢谢
x>1则x-1>0
原式=(x²-x)/(x-1)+3/(x-1)
=x(x-1)/(x-1)+3/(x-1)
=x+3/(x-1)
=(x-1)+3/(x-1)+1≥2√[(x-1)*3/(x-1)]+1=2√3+1
所以最小值是2√3+1