若不等式x²+2xy≤a(x²+y²)对于一切正数x、y恒成立,则a的最小值为若不等式x²+2xy≤a(x²+y²)对于一切正数x、y恒成立,则a的最小值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:57:51
若不等式x²+2xy≤a(x²+y²)对于一切正数x、y恒成立,则a的最小值为若不等式x²+2xy≤a(x²+y²)对于一切正数x、y恒成立,则a的最小值为
xTN@K*;c;*eX {gI6B!D@/'036BIi7mW;s=wlq>{gU6ׯٹi m'=Gnv{86ūm^^NjYf6hP%N*z:^gʺgBJo] )F8^Y9SD#r 6 "M)ex+?C|ͥ]үӃ&+!ޙ&"UPFxjuv( ɐ!Gx 0?#G,toVy k$NZm>6W֘7%KH%NIYqCEFR`Dp0X,fYAW+rUU{Bo/=AO 7C( b^ äS+Y>[.+[K 0淂dd=aq6`sĘ7 'L4)Hz¬գ@'z 3/Bf

若不等式x²+2xy≤a(x²+y²)对于一切正数x、y恒成立,则a的最小值为若不等式x²+2xy≤a(x²+y²)对于一切正数x、y恒成立,则a的最小值为
若不等式x²+2xy≤a(x²+y²)对于一切正数x、y恒成立,则a的最小值为
若不等式x²+2xy≤a(x²+y²)对于一切正数x、y恒成立,则a的最小值为

若不等式x²+2xy≤a(x²+y²)对于一切正数x、y恒成立,则a的最小值为若不等式x²+2xy≤a(x²+y²)对于一切正数x、y恒成立,则a的最小值为
若不等式x²+2xy≤a(x²+y²)对于一切正数x、y恒成立
看成关于x的不等式
则 (1-a)x²+2y*x-ay²≤0(**)恒成立
若a=1,易知不等式不能恒成立
∴ (**)是二次不等式
∴ 1-a(1+√5)/2或a(1+√5)/2


x²+2xy≤a(x²+y²)
x²+2xy≤ax²+ay²
(a-1)x²-2xy+ay²≥0
x、y均为正数,两边同时除以y²得
(a-1)(x/y)²-2x/y+a≥0
设t=y/x 则t>0
(a-1)t²-2t+a≥0恒...

全部展开


x²+2xy≤a(x²+y²)
x²+2xy≤ax²+ay²
(a-1)x²-2xy+ay²≥0
x、y均为正数,两边同时除以y²得
(a-1)(x/y)²-2x/y+a≥0
设t=y/x 则t>0
(a-1)t²-2t+a≥0恒成立。
令f(t)=(a-1)t²-2t+a (t>0)则
a-1>0
f(0)=a≥0
解得
a>1

收起

(a-1)x²-2xy+ay²≥0,y=0,a-1>0 a>1;y≠0,(a-1)x²/y²-2x/y+a≥0,a-1>0且(-2)²-4a(a-1)≥0
解得a=二分之(根号5加1)