一道初二几何题,简单题变形而得,快来看看啊~如图,△ABC中,H是高AD和BE的交点,当∠ABC=45°时,则BH和AC的大小关系是BH=AC,若∠ABC=135°,其它条件不变,则BH和AC的大小关系发生什么变化?请说明理由(

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:54:24
一道初二几何题,简单题变形而得,快来看看啊~如图,△ABC中,H是高AD和BE的交点,当∠ABC=45°时,则BH和AC的大小关系是BH=AC,若∠ABC=135°,其它条件不变,则BH和AC的大小关系发生什么变化?请说明理由(
xmOPǿ 1٫5@[.PLx/Bm %{  ) fj!MʃQܽmyWi+gjY{N=\1$'38yђy+l9x{•qzH>&J>8*{|x)W?vUM||ق"7͜7R5<npD=@ -{MN7q탲:M$/guWjZT)/fn&ʾfg f /E|%ׁXӢ{$HĞd Gbh"HUN‘%߆9|,E=N"㑉)D; R%fEFb:8v K98SHKF.r H`/b % -4kaZXqJVp䤹'.26'hx֍}u!/IuIsnyYAE6o,=7:w{oF4Ih"y4ԃq`Lqug|vS_R+zdIY{"äȈ}?eu05.#c0\vgpm)y@y-P+`Y6~$S 2 P{Tȼbϵ,x&>^߸a ap<> ~ř#8I! ,euC`M}o؀Dkߙ9U+5R ֖!lӋ

一道初二几何题,简单题变形而得,快来看看啊~如图,△ABC中,H是高AD和BE的交点,当∠ABC=45°时,则BH和AC的大小关系是BH=AC,若∠ABC=135°,其它条件不变,则BH和AC的大小关系发生什么变化?请说明理由(
一道初二几何题,简单题变形而得,快来看看啊~
如图,△ABC中,H是高AD和BE的交点,当∠ABC=45°时,则BH和AC的大小关系是BH=AC,若∠ABC=135°,其它条件不变,则BH和AC的大小关系发生什么变化?请说明理由(证明)

一道初二几何题,简单题变形而得,快来看看啊~如图,△ABC中,H是高AD和BE的交点,当∠ABC=45°时,则BH和AC的大小关系是BH=AC,若∠ABC=135°,其它条件不变,则BH和AC的大小关系发生什么变化?请说明理由(
证明:
∠BHD+∠HBD=90°
∠HBD+∠C=90°
∠BHD=∠C
当∠ABC=45°时,BD=AD
Rt△BHD≌Rt△ACD
BH=AC
若∠ABC=135°,其它条件不变,BH和AC的大小关系没有变化,还是BH=AC.
以上证明过程完全适用,只多了个对顶角相等.
∠BHD+∠HBD=90°
∠EBC+∠C=90°
∠EBC=∠HBD
∠BHD=∠C
当∠ABC=135°时,∠ABD=45°,BD=AD
Rt△BHD≌Rt△ACD
BH=AC.

BH和AC还是相等!可以用特殊的等腰直角三角形为例。当角ABC等于135度时,画出草图,可以证明三角形BDE和ADC全等。而AC和BH分别为这两个三角形的斜边。所以还是相等的!谢谢!

题目有问题
当角ABC=135时 无H点