证明题 an收敛bn收敛 证明an*bn收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 19:19:22
xTn@/yA'T@jFT: 8(mJRZL#)K:3WB=&MTιZԼqw )$Z$6?W5/8
?ݚ'H2L$Ӊᙟ;p.7!tCpۉD5m߫nJz0)oulsl.?ï.ES:,C*DbnQ%RDwg= lVcwÑQEDp5LX۳=ffdd,V3laa>rnت
>7u-^4
YH
T]X=E@LRّPf75w\{ޒ
R619\f7(;`\B K[-
]Yla,ӓ't5qAC'ѱ w~
х7軣5+QaT=&@{߾o`lSƢ
证明题 an收敛bn收敛 证明an*bn收敛
证明题 an收敛bn收敛 证明an*bn收敛
证明题 an收敛bn收敛 证明an*bn收敛
如果∑an ,∑bn 是一般项级数,则性质不对:
∑an=(-1)^n/√n
∑bn=(-1)^n/√n
由 Leibniz 交错级数收敛定理,∑an ,∑bn 都收敛,但是
∑anbn=∑1/n 发散;
如果∑an ,∑bn 是正项级数,则性质正确:
∑an 收敛,则 liman=0 an有界M;
0
假设an,bn极限分别为a,b
则存在N1,使得对任意e>0,当n>N1时,|an-a|
|an*bn-a*b|
=|an*bn-an*b+an*b-a*b|<|an|*|bn-b|+|an-a|*|b...
全部展开
假设an,bn极限分别为a,b
则存在N1,使得对任意e>0,当n>N1时,|an-a|
|an*bn-a*b|
=|an*bn-an*b+an*b-a*b|<|an|*|bn-b|+|an-a|*|b|
<|an|*e+|b|*e<(M+b)*e
根据极限定义,知an*bn收敛于a*b.
此解答仅供参考。
收起
bnbn
证明题 an收敛bn收敛 证明an*bn收敛
若级数an条件收敛,级数bn绝对收敛证明级数(an+bn)条件收敛
正项级数 an 收敛 bn小于等于an 则级数 bn 收敛 怎么证明?
设An>0,级数An收敛,Bn=1-ln(1+An)/An,证明级数Bn收敛
证证明:若级数∑an收敛,∑(bn+1-bn)绝对收敛,则级数∑anbn也收敛
若正向级数∑an和∑bn收敛,证明级数∑(an+bn)^2收敛
如果数列an,bn皆收敛,那么数列an/bn比必收敛,谁能帮我证明这句话的对错
证明:an绝对收敛,bn有界,则∑anbn绝对收敛.
数项级数,an跟ab的平方都收敛,证明an乘bn的绝对值收敛,(an+bn)的平方也收敛.具体见补充的图.
一般无穷级数证明题一般级数 ∑an ∑bn 收敛, 且an≤cn≤bn , 求证 级数 ∑cn 收敛不错不错...那还有一道
级数∑Bn,∑An-A(n-1)收敛,证明∑An*Bn收敛忘了说Bn 是正项级数~
数列an小于等于bn小于等于cn,bn收敛,cn-an的极限为0,证明an、cn均收敛数列an小于等于bn小于等于cn,bn收敛,cn-an的极限为0,如何证明an、cn均收敛
an≥0,bn≥0,且∑an和∑bn都收敛,证明∑根号(anbn)收敛an乘以bn在根号内,求证的级数的Un是整个根号.
级数 证明题~已知∑(n=1到∞)an^2与∑(n=1到∞)bn^2都收敛,证明∑(n=1到∞)| an bn|及∑(n=1到∞)(an + bn)^2 、∑(n=1到∞)| an |/n都收敛
级数收敛性的一道证明题若级数anx^n的收敛半径是R1,级数bnx^n的收敛半径是R2,R2>R1,求级数(an+bn)x^n的收敛半径.上面的黎曼和省略了,-
设{an}与{bn}中一个是收敛数列,另一个是发散数列.证明{an±bn}是发散数列.又问{anbn}和{an/bn}(bn≠0}是否必为发散数列.
收敛数列保序性证明过程中的问题如图划线部分,怎么知道 |an-a|>0 |bn-b|
设∑bn绝对收敛,且(1)数列an有界;(2)lim an存在;(3)∑an收敛,证明如果以上3个条件有一个成立,则∑anbn绝对收敛