f(x)=x(x+1)(x+2)...(x+n)在x=0处的导数?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 23:22:19
f(x)=x(x+1)(x+2)...(x+n)在x=0处的导数?
xQN@B-1.trBt3C1hQ S^~6IӦsϹ&ө V5 DT`-F93'ɓTZcQNoNW,t|=&@b*LM\ײ@zF)2I҈pgg7iZI Z۾VB_ҟ۾=AbV] EMAŮ}XGtZ6Yή2ܲfUb";7'UZ8c;YytYvc3o)I/

f(x)=x(x+1)(x+2)...(x+n)在x=0处的导数?
f(x)=x(x+1)(x+2)...(x+n)在x=0处的导数?

f(x)=x(x+1)(x+2)...(x+n)在x=0处的导数?
f(x)=x(x+1)(x+2)...(x+n)
是n+1次多项式
所以
f'(x)是n次多项式
f'(0)就是f'(x)的常数项
f(x)一次项x的系数为
1*2*3*...*n=n!
[从n+1个因式中选取一个x和n个常数
由于x=x+0
所以只能选取x+0中的x及其他n个因式中的常数项]
所以f'(x)的常数项为n!
f'(0)=n!

n!
导数为依次对每个因式求导的和
f'(x)=(x+1)(x+2)...(x+n) + x(x+2)...(x+n) + x(x+1)...(x+n) + ……
除第一项外都含有x
故f'(0)=1*2*3……n = n!

最简单易懂的就是,把x看为第一项,后面的整体为一项,再利用导数乘法求导