求一阶偏导数:z=arctan√(x^y )

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 02:06:16
求一阶偏导数:z=arctan√(x^y )
x){Ɏ3=m~ϳUeX\cFE\MR>J lH2J]BP?P$`oU UViTj*Y p0+WdB@|\&$فX|t

求一阶偏导数:z=arctan√(x^y )
求一阶偏导数:z=arctan√(x^y )

求一阶偏导数:z=arctan√(x^y )
z'(x)=1/[1+(x^y)] * 1/2√(x^y) * yx^(y-1) =yx^(y-1) / {2√(x^y)[1+(x^y)] }
z'(y)=1/[1+(x^y)] * 1/2√(x^y) * lnx *x^y=(x^y) *lnx / {2√(x^y)[1+(x^y)] }