f(x)=x^2 x<=0 1+2x x>0 求积分∫0-->2[f(x-1)]dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 03:00:07
f(x)=x^2 x<=0 1+2x x>0 求积分∫0-->2[f(x-1)]dx
xP= 0JA*mzQP͐E/ lO#VGktsDi<~yKeCQ*M»é(CMlFSO菷X^GAiK-o&jWkS>IJQl@&VAwCd.O}Mټ > ̽A!6">KQ

f(x)=x^2 x<=0 1+2x x>0 求积分∫0-->2[f(x-1)]dx
f(x)=x^2 x<=0 1+2x x>0 求积分∫0-->2[f(x-1)]dx

f(x)=x^2 x<=0 1+2x x>0 求积分∫0-->2[f(x-1)]dx
f(x)=x^2 x<=0
1+2x x>0
∫0-->2[f(x-1)]dx
令x-1=t
x=0,t=-1;
x=2,t=1
原式=∫(-1,1)f(t)dt
=∫(-1,0)t²dt+∫(0,1)(1+2t)dt
=t³/3|(-1,0)+(t+t²)|(0,1)
=0-(-1/3)+1+1-0
=1/3+2
=7/3