请比较下列各组两个代数式的大小(1)x^6+1与x^4+x^2;(2)当x≠1时,1+2x^4与2x^3+x^2.请详细解释,谢谢!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:45:27
请比较下列各组两个代数式的大小(1)x^6+1与x^4+x^2;(2)当x≠1时,1+2x^4与2x^3+x^2.请详细解释,谢谢!
xUnPvn Rj7,QĐ%MBP*q1 R݇:׾U]uS q=sy<'s1y"RD V;Yz iH>iOA/Jvg_ 졐or?U$ҙG%Ap8A {y\JG@Oe8k?BZ/+wEȊ+y؈@,J եyK%HLVfX})BY%K%6)s6\q:)5 0YBbkwlƑ6mzDF)&YD/'mkqKfI\ɑj"+e!N2]]OA?} o"()~GfQ&%agf1 (~#l@q0{^CF/\f3F? |

请比较下列各组两个代数式的大小(1)x^6+1与x^4+x^2;(2)当x≠1时,1+2x^4与2x^3+x^2.请详细解释,谢谢!
请比较下列各组两个代数式的大小
(1)x^6+1与x^4+x^2;
(2)当x≠1时,1+2x^4与2x^3+x^2.
请详细解释,谢谢!

请比较下列各组两个代数式的大小(1)x^6+1与x^4+x^2;(2)当x≠1时,1+2x^4与2x^3+x^2.请详细解释,谢谢!
1)因为 x^6+1-(x^4+x^2)
=x^4(x^2-1)-(x^2-1)
=(x^2-1)(x^4-1)
=[(x-1)(x+1)]^2(x^2+1)
当x=1或者-1时,x^6+1-(x^4+x^2)=0,即x^6+1=x^4+x^2
当x为其它任意数时,[(x-1)(x+1)]^2(x^2+1)0>,则 x^6+1>x^4+x^2
2)因为1+2x^4-2x^3-x^2
=2x^3(x-1)-(x-1)(x+1)
=(x-1)(2x^3-x-1)
=(x-1)[2(x^3-1)-(x-1)]
=(x-1)[2(x-1)(x^2+x+1)-(x-1)]
=(x-1)^2[2(x^2+x+1)-1]
=(x-1)^2(2x^2+2x+1)
又因为2x^2+2x+1=2(x^2+x)+1
=2[(x^2+x+1/4)-1/4]+1
=2[(x+1/2)^2-1/4]+1
=2(x+1/2)^2+1/2>0
因为 x≠1,则(x-1)^2>0
所以1+2x^4-2x^3-x^2>0
即1+2x^4>2x^3+x^2

(1) x^6+1-(x^4+x^2)
=x^4(x^2-1)-(x^2-1)
=(x^2-1)(x^4-1)
=[(x-1)(x+1)]^2(x^2+1)
当x=1时,上式等于0,此时两式相等
当x不等于1时,上式都大于0,那么x^6+1>x^4+x^2
(2...

全部展开

(1) x^6+1-(x^4+x^2)
=x^4(x^2-1)-(x^2-1)
=(x^2-1)(x^4-1)
=[(x-1)(x+1)]^2(x^2+1)
当x=1时,上式等于0,此时两式相等
当x不等于1时,上式都大于0,那么x^6+1>x^4+x^2
(2)解法同上,两式相减,看结果与0的关系
1+2x^4-2x^3-x^2
=2x^3(x-1)-(x-1)(x+1)
=(x-1)(2x^3-x-1)
=(x-1)[2(x^3-1)-(x-1)]
=(x-1)[2(x-1)(x^2+x+1)-(x-1)]
=(x-1)^2[2(x^2+x+1)-1]
=(x-1)^2(2x^2+2x+1)
第二题是不是抄错数了?

收起

用x=2代进去算,以后这种题就随便带个简单数字,答案都正确