曲线y=e^xcosx在(0,1)处的切线与直线C的距离为根号5,求直线C的方程.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 22:26:34
曲线y=e^xcosx在(0,1)处的切线与直线C的距离为根号5,求直线C的方程.
xPj0[bפ[KO{ aD< MCeXԵ®}7x%=ŷ-~ {]L> %"/v!>lo=f:Y7(fI샢b 8Q(; ^zn Fkey<94ZYG.

曲线y=e^xcosx在(0,1)处的切线与直线C的距离为根号5,求直线C的方程.
曲线y=e^xcosx在(0,1)处的切线与直线C的距离为根号5,求直线C的方程.

曲线y=e^xcosx在(0,1)处的切线与直线C的距离为根号5,求直线C的方程.
求导y'=e^x(cosx-sinx)
y'(0)=1
直线为y=x+1
d=(CI-C2)/根号1+k^2=根号5
C1-C2绝对值为根号10
C2=根号10+1或1-根号10
因为直线互相平行
所以y1=x+1+根号10
y2=x+1-根号10

x-y+1-根号10=0或x-y+1+根号10=0

y=x+1+根号下10
y=x+1-根号下10